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ABSTRACT 
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    Department of Civil and Environmental Engineering 
 
  

Climate change and urbanization are nonstationary factors that influence 

hydrologic data, which results in the concept of multinonstationarity in hydrologic data.  

Methods to deal with important aspects of multinonstationarity do not exist.  Currently, a 

statistical method to detect multinonstationarity in a hydrologic time series is needed.  

Likewise, flood mitigation methods, such as infrastructure designs and the national flood 

insurance policy, are based on the assumption of stationarity and, therefore, may not 

provide expected levels of protection in a nonstationary environment.  The goal of this 

study was to provide a method to detect and model multinonstationarity in hydrologic 

data, as well as to assess the change in risk associated with multinonstationarity.  A 

statistical test was developed to identify multiple change points within a time series, 

which is necessary to achieve optimum modeling accuracy for hydrologic data in a 

nonstationary environment.  A procedure was developed to incorporate 

multinonstationarity into the existing flood frequency analysis method based on two 

nonstationary factors: urbanization and climate change.  Finally, a flood risk assessment 
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was conducted in which the risks as well as the performance of a flood mitigation system 

were compared for stationary and multinonstationary environments.   

The results showed that the incorporation of multinonstationarity into the current 

flood frequency analysis creates a noticeable difference in the magnitude of floods for the 

same return period as well as the associated risk.  Based on the developed method, 

engineers and policy makers can begin to analyze the hydrologic and risk sensitivity of 

communities to nonstationarity.  If the sensitivities of the system are understood, the 

factors, such as urbanization and emissions rates that influence climate change, can 

potentially be controlled to mitigate the consequences. Therefore, while many 

uncertainties exist in regards to the future conditions of these nonstationary factors, 

through methods such as those proposed in this study, the range of possibilities will be 

better understood and lead to more informed decisions to mitigate future risks.
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Recent extreme events such as Hurricane Katrina and the Midwest Floods of 2008 

have brought attention to the effects of flooding and the need for flood protection.  

Current design standards and policies, such as the National Flood Insurance Policy, are 

based upon the estimated magnitude of the 100-year flood event, determined by a flood 

frequency analysis.  Flood frequency analyses are conducted in an attempt to predict the 

likelihood of a flood of a specific magnitude occurring.  Current methods to conduct 

flood frequency analyses assume flood event stationarity and independence.  Stationarity 

implies that the probability of the occurrence of a 100-year flood in a given year will not 

change over time.  However, recent extreme events as well as considerable research 

suggest that our climate is nonstationary.  Likewise, changes in land cover, which 

influence runoff, have been occurring throughout the past century and will continue to 

increase as people relocate to urban areas.  Changes in both of these variables may 

change the statistics of flood records and, therefore, the accuracy of flood frequency 

estimates.  Milly et al. (2009) state that stationarity is no longer an applicable assumption 

for water-resource risk assessment and planning.  Existing methods must be updated in 

order to adapt to the uncertainties that will exist in a changing environment. 

1.2 Climate Change 
Scientists suggest that climate change is a main source of nonstationarity.  Caused 

by factors such as an increase in the concentrations of greenhouse gases in the 

atmosphere, climate change increases downwelling infrared radiation and, therefore, 

surface temperatures.  This influences the hydrologic cycle, as much of the surface 
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moisture is evaporated by the increased heating at the surface (Trenberth1999).  

Increased temperatures and water vapor in the atmosphere will increase the transport of 

water vapor from areas of divergence to areas of convergence.  The result is global 

changes in precipitation, particularly increases in the intertropical convergence zones and 

subpolar and polar regions and decreases in the subtropics.  North America and Europe 

will experience patterns of both moistening and drying with much uncertainty existing at 

the boundaries (IPCC 2007).   

In addition to mean precipitation increases, the change in extreme events in the 

changing climates is important.  Many studies have been conducted in an attempt to 

predict the changes expected in extreme precipitation both globally and regionally.  For 

example, Karl and Knight (1998) detected a 10% increase in precipitation across the 

contiguous United States.  They found this increase to occur mainly in the heavy to 

extreme precipitation events, implying that the increase is disproportionate across the 

precipitation distribution.  Barnet et al. (2006) showed that the global average frequency 

of extremely wet days is expected to double in response to doubled atmospheric CO2 

conditions.  Semenov and Bengtsson (2002) determined that the mean precipitation 

intensity will increase significantly in response to increased atmospheric greenhouse gas 

concentrations, with an increase of about 20% in the eastern United States for the twenty-

first century.  Likewise, the frequency of wet days exceeding the 90th percentile is 

expected to increase globally, with an increase of about 30% in the eastern United States 

for the twenty-first century (Semenov and Bengtsson 2002).  Based on the A1B 

greenhouse gas emissions scenario, the IPCC (2007) predicts that the fraction of extreme 

wet seasons in a set time period is expected to increase by 97 to 100% regionally 
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throughout North America from 1980-2000 to 2080-2100, in which an extreme wet 

season is defined by the wettest year in the 1980-2000 control period and the fraction of 

years exceeding this magnitude in the 2080-2100 time period is considered the percent 

increase.  These studies imply changes in extreme precipitation events are presently 

occurring on a global scale as well as regionally in the United States. 

As stated in the IPCC (2007) and suggested in aforementioned studies, climate 

change causes nonstationarity in physical processes.  Thus, the statistical distributions of 

precipitation are changing over time.  As runoff is directly dependant on precipitation, 

nonstationarity in the precipitation distribution will result in changes to flood frequency 

as well. 

1.3 Urbanization 
In addition to a changing climate, landuse changes occur over time, which 

influence the watershed response to precipitation events.  Theobald et al. (2009) predicted 

that the impervious surface cover in the conterminous United States will increase from 

83,749 km2 in 2000 to 111,070 km2 in 2030.  Likewise, they predict 8.5% of all 

watersheds in the United States will be stressed and degraded due to impervious cover by 

2030.  Increased urbanization results in reduced infiltration capabilities.  For example, a 

studied conducted by Kauffman et al. (2009) showed that increases in impervious area in 

Delaware resulted in decreases in dry weather baseflow, suggesting that decreased 

infiltration capacities are limiting groundwater recharge.  Limited infiltration results in an 

increase in and rerouting of surface runoff.  Because of this, the post-urbanization 

watershed runoff that would result from a precipitation event will differ from and most 

likely be greater than the pre-urbanization watershed runoff resulting from the same 
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event.  Beighley et al. (2009) found that varying the source of impervious area data and, 

therefore, the amount of impervious area in a hydrologic model resulted in noticeable 

differences in the simulated peak discharge value ranging from the 2-yr to the 100-yr 

flood.  Therefore, while climate change is influencing the precipitation intensity and 

frequency, urbanization and other land use changes are affecting the runoff resulting from 

the changing precipitation events. 

1.4 Detection of Nonstationarity 
While the effects of nonstationarity are clear, detecting trends in rainfall and 

runoff data are difficult.  Graphical analyses are a common form of trend detection in 

data analysis; however, dominance of random variation often makes it difficult to identify 

systematic changes or trends from such graphs (McCuen 2003).  Many statistical tests are 

available to detect trends in data where random variation greatly influences individual 

sample points.  However, the power of such tests is influenced by the length of data 

records available and assumptions specific to the test such as distribution type. 

In the case of climate change or urbanization, trends may not exist throughout the 

entire data set.  For example, urbanization may only occur during a ten-year time period 

and then stabilize while climate change may only affect the latter portion of the flood 

record.  The location within a time series in which the statistical characteristics may 

change as a result of outside factors such as environmental changes is defined as a change 

point (Reeves et al. 2007).  Knowledge of change points within a hydrologic time series 

is beneficial in order to provide accurate hydrologic models.  For example, assume that a 

noticeable trend occurs in a mean annual discharge time series and is modeled through 

linear regression.  The time series spans the entire 20th century; however, the rate of land 
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development rapidly increased in the middle of the 20th century, which resulted in a 

significant increase in mean annual discharge.  If linear regression is applied to the entire 

time series, then the effect of urbanization will be underestimated.  Likewise, if the 

zoning laws were implemented in the latter portion of the 20th century, which resulted in 

the stabilization of the previously increasing effects of urbanization, then the 

extrapolation of the fitted linear model will result in overprediction of future runoff.  The 

knowledge of the change points at which urbanization both began and then ceased to 

influence the mean annual discharge would enable the modeler to better model the 

hydrologic time series. 

While the importance of the identification of change points is apparent, currently 

a statistical test to detect multiple change points in time based on multinonstationarity 

does not exist.  Reeves et al. (2007) discuss the statistical tests that are currently 

available; however, they state that the existing tests all assume that at most, one change 

point exists within the time series analyzed.  Therefore, detection of trends influenced by 

nonstationarity is constrained by the limitations of existing statistical tests and behavior 

of the predictor variables.   

1.5 Effect of Nonstationarity on Flood Frequency Analyses 
In addition to the importance of the detection of nonstationarity within hydrologic 

data, methods to model the effects of nonstationarity are needed.  Flood frequency 

analyses are used as a method of estimating the probability of the occurrence of a 

particular flood magnitude.  The current method for conducting a flood frequency 

analysis, recommended by the U.S. Water Resources Council in Bulletin 17B 

(Interagency 1982), assumes that the peak discharge data analyzed are stationary and 
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independent (McCuen 2005).  Based on the expected changes in climate and land 

development, the existing method proposed to conduct a flood frequency analysis will be 

inapplicable under future nonstationary conditions.   

Flood frequency estimates are a primary basis upon which floodplain 

management measures and the National Flood Insurance Program are based (Olsen 

2006).  For example, the 100-yr storm is an accepted criterion upon which floodplain 

management decisions are based.  In a nonstationary world, the magnitude of the 100-yr 

event will be changing, most likely increasing, year-to-year.  Therefore, a new design 

criterion may be necessary for future floodplain management designs.  Without 

knowledge of the change in flood frequencies with nonstationarity, current approaches to 

floodplain management may be inefficient as their effectiveness may decrease while 

flood frequencies increase. 

Research has attempted to develop a frequency analysis method that accounts for 

nonstationarity for both precipitation and flooding events.  Khaliq et al. (2006) 

recommend incorporating covariates into parameters of distributions in a precipitation 

frequency analyses.  Katz et al. (2002) applied the covariate approach using sea level 

pressure and seasonal Darwin pressure as covariates in prediction parameters for 

precipitation and peak flow distributions, respectively, at different locations.  Villarini et 

al. (2009a) and Villarini et al. (2009b) used the Generalized Additive Models for 

Location, Scale, and Shape (GAMLSS) to model the time variant flood parameters.  

Cunderlik and Ouarda (2006) and Leclerc and Ouarda (2007) modeled the first two 

moments of multiple flood series as a function of time to develop a nonstationary 

regional flood frequency analysis method that can be applied at ungauged sites.   



www.manaraa.com

While these nonstationarity studies begin to provide solutions to the issue of 

nonstationarity, many limitations still exist.  Existing flood frequency studies do not 

account for both land use change and climate change when varying the flood frequency 

distribution parameters.  Likewise, most studies use time as the only variable, which 

assumes that the change that occurs is temporally and spatially stationary.  Improvements 

to these proposed nonstationary methods are necessary to ensure that the most accurate 

estimate of future flood conditions is available. The inability to adapt the existing flood 

frequency method to multinonstationary conditions may result in a decrease in the 

expected level of protection for both structural and non-structural mitigation systems that 

are dependent on the estimates of flood magnitudes provided by flood frequency 

analyses. 

1.6 Effects of Nonstationarity on Risk Analyses 
The inability to statistically detect multinonstationarity and adjust flood frequency 

analyses for nonstationarity influences the assessment of risk associated with current 

flood frequency estimates.  Risk can be defined as the product of the probability of the 

occurrence of an event and the consequences associated with the event.  The 

consequences, such as property damage and loss of life, are dependent on the defined 

hazard.  For example, the hazard associated with flooding would reflect the depth and 

velocity of the flood.  As the magnitude of the hazard increases, the consequences will 

likely increase.   

The goal of a risk analysis, as defined by Moser et al. (2009), is to evaluate risk 

and then consider the monetary and non-monetary costs and benefits involved in the 

implementation of risk mitigation methods.  The risk analysis process consists of risk 
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assessment, risk management, and risk communication.  The risk assessment process is 

dependent on the accurate assessment of the hazard and resulting consequences.  

Potential options to mitigate the estimated risk are considered through risk management.  

Risk communication includes the discussion between the parties involved in each of the 

risk assessment and management processes as well as additional stakeholders. 

With the existence of nonstationarity, it is likely that the flood hazard associated 

with a selected probability of occurrence will be underestimated.  For example, a flood 

frequency analysis based on stationary conditions will likely underestimate the 100-yr 

flood because the effects of the climate change and urbanization are not taken into 

account.  Therefore, the hazard associated with the 100-yr return period, or a 1% chance 

of occurrence in any given year, will be underestimated.  As a result, the consequences 

associated with the event will also be underestimated.  If the consequences associated 

with a selected event are underestimated, it will be difficult to provide effective options 

to mitigate the risk.  Therefore, it is necessary for nonstationarity to be implemented into 

risk analyses to ensure that policy makers and engineers are making well-informed 

decisions in an uncertain environment. 

1.7 Research Goals and Objectives 
In order to better evaluate flood risk in a multinonstationary environment of the 

future, better methods to detect and model nonstationarity in flood frequency patterns are 

needed as well as an approach to risk assessment in a nonstationary environment.  

Therefore, the goals of this research were to (1) develop a statistical method to detect 

multinonstationarity within a time series, (2) provide a method to conduct a 

multinonstationary flood frequency analysis that accounts for the effects of urbanization 
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and climate change, and (3) perform a nonstationary assessment of hydrologic risk.  This 

goal was achieved through the following objectives:   

 Develop a statistical procedure to aid in the detection of multinonstationarity  

 Develop a model that estimates future flow forecasts based on varying climate 

change and urbanization conditions 

 Develop an adjustment method to adjust measured annual maximum flood records 

to climate change and urbanization conditions at the design year of interest 

 Apply method to project beyond existing data records for multiple design years 

and design scenarios 

 Develop a multinonstationary flood frequency analysis based on the adjusted peak 

discharge records 

 Demonstrate risk assessment in a multinonstationary environment and compare 

results to risk assessments of flood frequency analyses that assume stationarity 

Through this research, engineers will have new methods to detect, model, and assess 

nonstationarity for hydrologic data.  As a result, the range of potential future flood risks 

will be better understood.  Scenario-based changes in flood frequency over time can be 

analyzed to determine the necessary approaches to mitigate flood risk.  Additionally, the 

availability of such information may have an impact on future policies regarding climate 

change, such as CO2 emissions and urbanization. Policy makers and engineers will be 

able to make better informed decisions about future actions in order to reduce the 

negative effects of flooding.  Variations of the method developed will aid in 

understanding the effects of multiple variables on future conditions in other nonstationary 

environments. 
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2.1 Climate Change 
2.1.1 Introduction 
 
 The IPCC Fourth Assessment Report: Climate Change 2007 defines climate 

change as “the state of the climate that can be identified (e.g. using statistical tests) by 

changes in the mean and/or variability of its properties and that persists for an extended 

period, typically decades or longer”.  While changes show spatial variation, general 

observed global changes over the past century include a decrease in the frequency of cold 

events while warm events have increased in frequency; heavy precipitation events have 

increased in frequency; and sea level has risen at many sites worldwide in the past half 

century (IPCC 2007).   

A changing climate can have a significant influence on the hydrologic cycle.  

Changes in temperature influence evaporation demands and soil moisture conditions.  

Temperature also influences snowmelt both in time of occurrence and amount. Changes 

in precipitation influence soil moisture conditions as well as runoff quantities.  And 

changes in runoff quantity influence streamflow as well as water table levels replenished 

by infiltrated rainfall (McCuen 2005).  Numerous studies have been conducted to project 

the future changes in the climate both on a global and regional scale and those effects on 

the hydrologic cycle.  A summary of the processes involved in a changing climate, 

observed and projected changes from the IPCC, and general circulation models and 

emissions scenarios is provided herein.  Additional studies are then discussed in regards 

to precipitation, streamflow, and temperature in a nonstationary future.   

2.1.2 Global and Regional Observed Climate Changes from the 20th Century 
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 Observed records of climate indices such as temperature and precipitation suggest 

that statistical changes have occurred, both globally and regionally.  In many instances, 

the rate of change has increased throughout the past century.  The estimated increase in 

global land surface temperature from 1850 to 2005 is 0.54 degrees Celsius per decade 

with an uncertainty of plus or minus 0.015 degrees.  From 1901 to 2005, estimates of 

warming increased ranging from 0.68 to 0.084 degrees Celsius per decade with 

uncertainties of 0.024 and 0.021, respectively.  From 1979 to 2005, this rate increased 

again with estimates ranging from 0.188 to 0.315 degrees Celsius per decade with 

uncertainties equal to 0.069 and 0.088, respectively.  These observations suggest that the 

rate of change of the Earth’s surface temperature has increased throughout the past 

century.  Regionally, warming has been statistically significant in most of globe with a 

few exceptions over the past century (Trenberth et al. 2007).   

 The urban heat island effect suggests that urban areas experience greater warming 

and climate change effects than neighboring areas.  However, these changes depend on 

local and seasonal climatic factors such as wind and cloud cover (Trenberth et al. 2007).  

Additionally, the detected effects of urbanization on climate change appear to be lower 

than temperature trends on a decadal and longer time scale (Jones et al. 1990; Peterson et 

al. 1999).  Additionally, areas with the greatest socioeconomic development have also 

been significantly influenced by atmospheric circulation changes which cause warming.  

This makes it difficult to conclude that warming was caused by urbanization.  The IPCC 

2007 assessment included an uncertainty equal to 0.006 and 0.002 degrees Celsius for 

land and combined land and ocean temperature estimates since 1900 to account for the 

urban heat island effect (Trenberth et al. 2007). 
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 Changes in atmospheric moisture, precipitation, and atmospheric circulation have 

accompanied increases in temperature.  However, measurement errors make it difficult to 

accurately report changes in precipitation and record lengths are generally shorter and 

less abundant than those for temperature.  Therefore, significant variation exists in the 

estimates of global mean annual precipitation changes.  However, regional trends have 

been reported.  In the higher latitudes, ranging from 30 to 85 degrees north, increasing 

trends in annual precipitation range from 6 to 8% from 1900 to 2005.  In North America 

and Canada, precipitation has increased from 1900 to 2005 with the exception of the 

South West United States and parts of Mexico.  Most of South America has experienced 

an increase in precipitation except Chile and Western portions of the continent.  Australia 

has also experienced an upward trend in precipitation; however, this trend is most likely 

due to two wet periods during the 1970’s and 1990’s.  Southwest Australia has 

experienced a decreasing trend since 1975.  Western Africa and Sahel precipitation 

records show the greatest decreasing trend.  India has experienced a 20% increase in 

precipitation over the entire 20th century; however, a decrease has occurred since 1979.  

In Eurasia, the majority of locations have experienced an increase rather than a decrease 

in precipitation.  Snowfall has also been affected by increasing temperatures, with many 

high latitude areas experiencing a shift from snow to rain.  Overall, much uncertainty in 

trends, regional patterns, and data limitations make it difficult to assess general changes 

in precipitation patterns with climate change (Trenberth et al. 2007). 

 While increased temperatures are expected to affect precipitation, a consistent 

correlation between the two variables does not exist.  In North America and Europe, 

warmer seasons show a negative correlation between temperature and precipitation, with 
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warmer summers experiencing less rainfall than cooler summers.  In latitudes above 40 

degrees, a positive correlation exists during winter months due to an increased water 

holding capacity with temperature.  When ocean conditions are a driving force of the 

atmosphere, such as during El Nino events, temperature and precipitation are positively 

correlated.  Other regional variations have been observed in the relationship between 

precipitation and temperature, which suggests that the relationship is influenced by 

additional factors (Trenberth et al. 2007). 

2.1.3 Climate Change, Drivers, and Uncertainties 
 
 Climate is influenced by changes to the Earth’s radiation balance.  30% of solar 

radiation is reflected back to space from the atmosphere, with 2/3 of this reflected 

radiation due to clouds and particles such as aerosols and 1/3 due to areas, such as snow, 

ice, and desert, with light-colored surfaces.  The remaining energy from the sun is 

absorbed by the Earth’s surface.  To maintain an energy balance, the Earth emits 

longwave radiation back to space.  However, greenhouse gases in the atmosphere trap a 

portion of this energy and warm the Earth’s surface.  This process is known as the natural 

greenhouse gas effect, with carbon dioxide and water vapor as the most influential 

greenhouse gases.  Cloud cover also can have a greenhouse gas effect, but this effect is 

outweighed by the cooling effect clouds have through reflecting incoming solar radiation 

back to space.  Energy is also released from the Earth’s surface through evaporation.  As 

water vapor from evaporation condenses into clouds, the energy is released as latent heat, 

which influences atmospheric circulation and, therefore, ocean circulation (Le Treut 

2007). 
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Changes to any of the following components will alter the Earth’s radiation 

balance: (1) incoming solar radiation; (2) solar radiation levels reflected back to space; 

and (3) longwave radiation from the Earth to space.  The reflection of incoming solar 

radiation is influenced by changes in cloud cover, aerosols and other atmospheric 

particles, and land cover.  Changes in longwave radiation from the Earth to space are 

affected by changes in atmospheric GHG concentrations.  This enhances the greenhouse 

gas effect (Le Treut 2007). 

GHGs and aerosols affect the radiative forcing, or changes in the energy balance, 

within the Earth’s atmosphere.  Positive and negative radiative forcings have warming 

and cooling effects on the global climate, respectively, thus causing climate change.  In 

general, GHGs have a positive radiative forcing while aerosols have a negative radiative 

forcing.  Feedback cycles, such as water vapor, carbon, and cloud patterns, also influence 

climate change; however, much uncertainty remains in the modeling of feedback cycles 

(IPCC 2007).  These effects are summarized in Figure 1-1 provided by the IPCC Fourth 

Assessment Report: Climate Change 2007 (Le Treut et al. 2007).  
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Figure 2-1. The Earth’s Annual and Global Mean Energy Balance provided by the 
IPCC Fourth Assessment Report: Climate Change 2007 (Le Treut et al. (2007) 

 

The IPCC Fourth Assessment Report: Climate Change 2007 states that it is 

extremely unlikely that global climate changes over the past half century occurred 

without external forcings and very likely that anthropogenic factors played a role.  As 

previously explained, external forcings of climate change include greenhouse gases 

(GHGs) and aerosols.  While some GHGs and aerosols are the result of natural causes, 

anthropogenic factors cause increases in CO2, methane (CH4), nitrous oxide (N2O), and 

halocarbons, each with a long lifespan in the atmosphere although the lifespan varies with 

each GHG.  Increases in GHG emissions result in increases in atmospheric 

concentrations.  Anthropogenic factors also release aerosols into the atmosphere (IPCC 

2007).   

2.1.4 Climate Change Effects on Hydrologic Cycle 
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 As changes in radiative forcings influence temperature, evaporation processes are 

directly affected as well.  Therefore, warming will potentially increase the occurrence of 

droughts.  Additionally, the moisture holding capacity of the atmosphere increases as 

temperatures increase.   For every 1 degree Celsius increase in temperature, the increase 

in moisture holding capacity is estimated at 7% by the Clausius-Claperyon relationship 

(Trenberth et al. 2007).  While mean precipitation is constrained by the energy budget of 

the atmosphere, extreme events are affected by the moisture availability (Allan and 

Ingram 2002).  Therefore, a warmer climate is expected to increase moisture availability 

and increase storm intensity, even if the mean annual precipitation remains unchanged.  

A warmer climate will likely be at risk of more droughts during periods without 

precipitation but greater evaporation rates and more floods as a result of heavier 

precipitation events (Trenberth et al. 2007). 

 While the general effects of a warmer climate on the hydrologic cycle are 

understood, many uncertainties exist and make it difficult to project changes in regional 

and global mean and extreme precipitation events.  The regional existence of aerosols can 

influence temperature and evaporation, therefore, precipitation.  Atmospheric circulation 

patterns also influence precipitation patterns.  Examples include El Nino and the North 

Atlantic Oscillation.  Additionally, increases in temperature in colder climates will 

influence snowfall and snowpack.  The expected result is a shift from winter snow events 

to rain events and reduced availability of water resources from snowmelt in the spring 

and summer (Trenberth et al. 2007).  Finally, data limitations and significant regional 

differences have made it difficult to detect observed trends in precipitation throughout the 

past century (Huntington 2006). 
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2.1.5 General Circulation Models Forcings and Uncertainties 
 

General Circulation Models (GCMs) have been developed in an attempt to  

better understand and predict changes in climate.  The main forcing agents for GCMs in 

the IPCC report include greenhouse gas emissions and aerosols, while some models 

include other factors such as the effects of land cover on surface albedo.  Physical and 

chemical processes are simulated to determine the resulting atmospheric concentrations, 

radiative forcings, and finally, climate response throughout each of the IPCC emissions 

scenarios, which will be discussed in Section 2.1.7.  Within these sequential calculations 

exists a carbon feedback cycle.  The carbon feedback cycle refers to the reduction in the 

efficiency of anthropogenic CO2 absorption by the Earth system.   As a result, the 

atmospheric CO2 concentration is increased at a faster rate.  Therefore, greater reductions 

in CO2 emissions will be required to attain a stabilization of atmospheric concentrations.  

Much uncertainty exists, however, in the modeling of the carbon feedback cycle.  Figure 

2-2, provided by the IPCC Fourth Assessment Report: Climate Change 2007 (Meehl et 

al. 2007), shows the transition steps from climate model forcing agents to the climate 

response as well as the uncertainties involved in each step.  Other uncertainties involved 

in the climate model compiled in the IPCC include variations of forcing agents used by 

individual modeling groups as well as the indirect effects of aerosols modeled in each 

GCM (Meehl et al. 2007).  
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Figure 2-2. Uncertainties with Climate Models provided by the IPCC Fourth 
Assessment Report: Climate Change 2007 (Meehl et al. 2007) 

In addition to uncertainties in the climate models, Overpeck et al. (2011) discuss 

the need for more accessible and understandable climate data.  Existing knowledge of the 

climate system processes is based on observed and simulated data.  This data is used by 

scientists as well as resource managers and policy makers to aid in decision making.  This 

wide use enforces the need for more accessible climate data.  Uncertainties in observed 

data exist based on changes in observation methods.  Additionally, not all records are 

available digitally.  Paleoclimatic data must be made more available as they provide 

insights into climate before observation instruments were available.  Space borne 

instruments are a useful data source but require advancements as the life span is only a 

few years and they need advanced data processing techniques.  The third type of climate 

data available is model-reanalyses, which are based on simulated data from global or 

regional forecast models using observed data for a specified period.  Improvements to 

this type of data include the addition of more diverse observational data and longer time 

scales.  The final data type available is outputs from numerical climate model 

simulations.  The World Climate Research Program (WRCP) created the Coupled Model 
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Intercomparison Project (CMIP), which compiles and makes available climate 

projections from 16 international modeling groups for research and analysis.  The 

availability of the data beyond the physical climate science research communities has 

enabled other research communities to incorporate projected climate changes in decision 

making.  As advancements in modeling continue, the availability of climate data is 

expected to increase.  Climate scientists face the challenge of making climate data both 

more available and understandable by other research communities. 

2.1.6 Climate Responses 
 

The output of the comprehensive climate model shown in Figure 2-2 is the 

climate response.  Climate response includes changes in temperature, both mean and 

extreme; changes in precipitation, both mean and extreme; snow and ice cover; carbon 

cycle feedback; sea level rise and pressure; El Nino; monsoons; tropical cyclones; and 

other climatic events.   

2.1.7 Emissions Scenarios for IPCC Studies 
 
 The IPCC Special Report on Emissions Scenarios (SRES) (2000) provided 

emissions scenarios to be used in the IPCC Third and Fourth Assessment Reports.  The 

scenarios considered potential changes in the driving forces of climate change, which 

include changes in population, the economy, technology, land use, and energy, and their 

effects on greenhouse gases.  Four different families of scenarios were developed to 

represent different combinations of projections for the driving forces: A1, A2, B1, and B2 

(IPCC 2000). 

The B2 family assumes regional solutions will exist for sustainability issues for 

the economy, society, and environment.  The family consists of moderate population 
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growth and economic development with a slower and more varied technological change 

than the A1 and B1 families.  The B1 family represents the fast shifting of economic 

structures towards a service and information economy with a focus on global solutions to 

sustainability issues.  The A2 family represents a heterogeneous world with slow 

economic development and technological change, but fast population growth.  The A1 

family provides fast population growth that then declines in the middle of the 21st century 

as well as rapid economic growth and more efficient technology.  The A1 family 

provides three additional scenario groups that vary based on their characterization of 

alternative developments of energy.  The A1F scenario group projects a fossil fuel 

intensive future; A1B a balanced future; and A1T a predominantly non-fossil fuel future.  

In total, 40 scenarios were developed for the four families (IPCC 2000). 

The emissions rates for greenhouse gases, SO2, and ozone precursor emissions for 

each of the six scenario groups are shown in Table 2-1, provided by the IPCC SRES 

(2000).  The rates for the illustrative scenarios are shown in bold with the range across all 

40 scenarios in the family shown in parentheses.  The carbon dioxide emissions rates that 

result from energy and industry changes for each of the four families are shown in Figure 

2-3 and the rates that result from land-use change are shown in Figure 2-4.  The bold 

lines represent the illustrative scenarios while the remaining lines represent the remaining 

34 scenarios within the four groups.  Also shown are the ranges provided by additional 

sources.  The A1 family provides a range of emissions scenarios that span all four 

families, with the A1F providing the greatest rates, A1B moderate rates and AIT the 

lowest emissions rates.  A2 provides the highest emission rates, B2 provides moderate 

emissions rates, and B1 provides low emissions rates.  It is important to keep in mind that 
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these scenarios do not encompass every possible future emission scenario.  Likewise, 

each scenario is assumed equally likely to occur (IPCC 2000). 

Table 2-1. Summary of Greenhouse Gas, SO2, and Ozone Precursor Emissions in 
1990, 2020, 2050, and 2100 as well as Cumulative CO2 Emissions provided by IPCC 

(2000). 

Family      A1 A2 B1 B2 
Scenario 

group  
 199

0 A1FI A1B A1T A2 B1 B2 

Carbon 
dioxide, 

fossil fuels 
(GtC/ yr) 

  6             

2020  11.2 12.1 10 11 10 9 

    (10.7-14.3) 
(8.7-  
14.7) 

(9.8-  
10.0) 

(10.3- 
11.0) 

(8.2-  
13.2) 

(8.8-  
10.2) 

2050  23.1 16 12.3 16.5 11.7 11.2 

    
(20.6- 
26.8) 

(12.7-  
25.7) 

(11.4- 
12.3) 

(15.1- 
16.5) 

(8.5-  
17.5) 

(11.2- 
15.0) 

2100  30.3 13.1 4.3 28.9 5.2 13.8 

    
(30.3- 
36.8) 

(13.1-  
17.9) 

(4.3-  
8.6) 

(28.2- 
28.9) 

(3.3-  
7.9) 

(13.8- 
18.6) 

CO2, land 
use (GtC/ 

yr) 

  1.1             

2020  1.5 0.5 0.3 1.2 0.6 0 

    (0.3- 1.8) (0.3- 1.6) (0.3- 1.7) (1.1- 1.2) (0.0- 1.3) (0.0- 1.1) 

2050  0.8 0.4 0 0.9 -0.4 -0.2 

    (0.0- 0.8) (0.0- 1.0) (- 0.2- 0.0) (0.8- 0.9) (-0.7- 0.8) (-0.2- 1.2) 

2100  -2.1 0.4 0 0.2 -1 -0.5 

    (- 2.1- 0.0) (- 2.0- 2.2) (0.0- 0.1) (0.0- 0.2) 
(- 2.6- 
0.1) (- 0.5- 1.2) 

Cumulati
ve CO2, 

fossil fuels 
(GtC) 

1990-
2100   2128 1437 1038 1773 989 1160 

    
(2096- 
2478) 

(1220- 
1989) 

(1038- 
1051) 

(1651- 
1773) 

(794- 
1306) 

(1160- 
1448) 

Cumulati
ve CO2, 
land use 

(GtC) 

1990-
2100  61 62 31 89 -6 4 

    (31- 61) (31- 84) (31- 62) (81- 89) (- 22- 84) (4- 125) 

Cumulati
ve CO2, 

total 
(GtC) 

1990-
2100  2189 1499 1068 1862 983 1164 

    
(2127- 
2538) 

(1301- 
2073) 

(1068- 
1113) 

(1732- 
1862) 

(772- 
1390) 

(1164- 
1573) 

Sulfur 
dioxide, 

(MtS/ yr) 

  70.9             

2020  87 100 60 100 75 61 

    (60- 134) (62- 117) (60- 101) (80- 100) (52- 112) (61- 78) 

2050  81 64 40 105 69 56 

    (64- 139) (47- 64) (40- 64) (104- 105) (29- 69) (44- 56) 
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Family      A1 A2 B1 B2 
Scenario 

group  
 199

0 A1FI A1B A1T A2 B1 B2 

2100  40 28 20 60 25 48 

    (27- 83) (28- 47) (20- 27) (60- 69) (11- 25) (33- 48) 

Methane, 
(MtCH4 

/yr) 

  310             

2020  416 421 415 424 377 384 

    (416- 479) (406- 444) (415- 466) (418- 424) (377- 430) (384- 391) 

2050  630 452 500 598 359 505 

    (511- 630) (452- 636) (492- 500) (598- 671) (359- 546) (482- 505) 

2100  735 289 274 889 236 597 

    (289- 735) (289- 535) (274- 291) (889-1069) (236- 561) (465- 597) 

Nitrous 
oxide, 

(MtN/ yr) 

  6.7             

2020  9.3 7.2 6.1 9.6 8.1 6.1 

    (6.1- 9.3) (6.1- 9.6) (6.1- 7.8) (6.3- 9.6) (5.8- 9.5) (6.1- 11.5) 

2050  14.5 7.4 6.1 12 8.3 6.3 

    
(6.3-  
14.5) 

(6.3-  
13.8) 

(6.1-  
6.7) 

(6.8-  
12.0) 

(5.6-  
14.8)  (6.3- 13.2) 

2100  16.6 7 5.4 16.5 5.7 6.9 

  (5.9- 16.6) (5.8- 15.6) (4.8- 5.4) (8.1- 16.5) (5.3- 20.2) (6.9- 18.1) 

CFC/ 
HFC/ 
HCFC 
(MtC 

equiv./ y) 
b 

  1672             

2020   337 337 337 292 291 299 

2050   566 566 566 312 338 346 

2100   614 614 614 753 299 649 

PFC, 
(MtC 

equiv./ yr) 
b 

  32             

2020   42.7 42.7 42.7 50.9 31.7 54.8 

2050   88.7 88.7 88.7 92.2 42.2 106.6 

2100   115.3 115.3 115.3 178.4 44.9 121.3 

SF6 , 
(MtC 

equiv./ yr) 
b 

  37.7             

2020   47.8 47.8 47.8 63.5 37.4 54.7 

2050   119.2 119.2 119.2 104 67.9 79.2 

2100   94.6 94.6 94.6 164.6 42.6 69 

CO, 
(MtCO/ 

yr) 

  879             

2020  1204 1032 1147 1075 751 1022 

    
(1123- 
1552) 

(1032- 
1248) 

(1147- 
1160) 

(1075- 
1100) 

(751- 
1162) 

(941- 
1022) 

2050  2159 1214 1770 1428 471 319 

    
(1619- 
2307) 

(1214- 
1925) 

(1244- 
1770) 

(1428- 
1585) 

(471- 
1470) 

(1180- 
1319) 

2100  2570 1663 2077 2326 363 2002 
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Family      A1 A2 B1 B2 
Scenario 

group  
 199

0 A1FI A1B A1T A2 B1 B2 

    
(2298- 
3766) 

(1663- 
2532) 

(1520- 
2077) 

(2325- 
2646) 

(363- 
1871) 

(1487- 
2002) 

NMVOC, 
(Mt/ yr) 

  139             

2020  192 222 190 179 140 180 

    (178- 230) (194- 222) (188- 190) (179- 204) (140- 193) (179- 180) 

2050  322 279 241 225 116 217 

    (256- 322) (259- 301) (206- 241) (225- 242) (116- 237) (197- 217) 

2100  420 194 128 342 87 170 

    (167- 484) (137- 552) (114- 128) (311- 342) (58- 349) (130- 170) 

NOx , 
(MtN/ yr) 

  30.9             

2020  50 46 46 50 40 43 

    (46- 51) (46- 66) (46- 49) (47- 50) (38- 59) (38- 43) 

2050  95 48 61 71 39 55 

    (49- 95) (48- 100) (49- 61) (66- 71) (39- 72) (42- 55) 

2100  110 40 28 109 19 61 

    (40- 151) (40- 77) (28- 40) (109- 110) (16- 35) (34- 61) 

 

Figure 2-3. Global CO2 Emissions Related to Energy and Industry from 1900 to 
2100 for the 40 SRES scenarios provided by IPCC (2000). 
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Figure 2-4. Global CO2 Emissions Related to Land-Use Changes from 1900 to 2100 
for the 40 SRES scenarios provided by IPCC (2000). 

In addition to emission rates, the IPCC SRES (2000) provides CO2 atmospheric 

concentration for each family.  It is important to consider concentrations because 

scenarios that experience stabilization in emission rates can still result in high carbon 

dioxide atmospheric concentrations based on the previous emission rates.  For example, 

despite A1B providing lower emission rates than A2 in Figure 2-5 in the year 2100, the 

range of the projected CO2 atmospheric concentration for A1B encompasses that 

projected for A2 in 2100, with projections both above and below those for A2.  

Therefore, assumptions in regards to the effects of each scenario on climate change in the 

21st century should not be based solely on emissions rates, but concentrations as well. 
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Figure 2-5. Total Global Cumulative CO2 Emmissions (GtC) from 1990 to 2100 for 
the 40 SRES Scenarios provided by IPCC (2000). 

2.1.8 IPCC Global Climate Projections 
 
 The ensemble of GCMs included in the IPCC Fourth Assessment Report (2007) 

projects continued warming and increased annual mean precipitation for each of the three 

emissions scenarios.  The multi-model ensemble mean projects an increase in 

temperature of 3.13, 2.65, and 1.79 degrees Celsius from the 1980-1999 base period to 

the 2080-2099 projection period.  The committed scenario, in which atmospheric 

concentrations do not increase, is still projected to cause a 0.56 degrees Celsius increase.  

In each of the scenarios, the global mean precipitation is expected to increase, with the 

extreme events increasing by a greater percentage than the mean.  Relative to the increase 

in mean precipitation from 1980 to 1999, the mean annual precipitation is expected to 

increase by 1.4% per degree Celsius increase for scenario A2. 
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2.1.9 IPCC Regional Climate Projections for North America 
 

Average regional climate projections from climate model simulations suggest that 

the effects of climate change will vary throughout North America.  Along the western, 

southern, and eastern continental edges of North America, the ensemble mean annual 

temperature of the MMD models increases by 2-3 degrees Celsius from the 1980 to 1999 

period to the 2080 to 2099 period.  In the northern regions, annual mean temperature 

increases as great as 5 degrees Celsius are expected.  These projections vary between 

models.  However, all of the models in the IPCC projected at least a 2 degrees Celsius 

increase over North America.  Based on the mean of the PCMDI model simulations, 

annual precipitation is expected to increase by 20% throughout North America with an 

exception of the South-West where decreases in annual precipitation are expected.  Some 

of the increases in precipitation are expected to be offset by an increase in evaporation 

(Christensen et al. 2007).   

2.1.10 Climate Change Studies: Changes to Precipitation 
 

Karl et al. (1998) assessed the trends in observed precipitation at 182 stations 

across the contiguous United States from 1910-1996.  For stations missing data, a gamma 

function was fitted to each year and missing data were simulated based on the 

distribution.  Additional data sets were used as a cross-reference for the results.  Spatial 

averages were taken for nine regions of the United States to determine the change in 

precipitation for each region and nationally, both annually and seasonally.  The data were 

assessed to determine trends in precipitation as well as the contribution of frequency and 

intensity changes to these trends.  The results showed a precipitation increase of 10% 

across the contiguous United States, the greatest occurring in the spring and fall and least 
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in the winter.  The annual trend remained stable among the different data sets; however, 

the seasonal trends varied as much as 4% per century.  An increase in event frequency 

contributes to 87% of the increase in the total precipitation.  One-third of the increase in 

frequency is attributed to the heavy and extreme precipitation categories or the 90th 

percentile and greater. 

Karl et al. (2005) analyzed 30 to 80 years of historical records of high-frequency 

temperature and precipitation data from Australia, China, the Former Soviet Union, and 

the United States.  The results showed a decrease in day-to-day temperature variation in 

the Northern hemisphere, but mixed trends in Australia.  A significant increase was not 

detected.  Only 18 of the 96 annual trends were positive.  A nonparametric approach was 

used to assess the precipitation trends.  The results showed that the United States 

experienced an increase in extreme precipitation events in all but the southeast and far 

west and a decrease in light and moderate events.  These increases were predominantly in 

the spring and summer.  A trend in the total precipitation was not found. 

Wilby and Wigley (2002) assessed the changes in the precipitation shape and 

scale parameters of the two-parameter gamma distribution as a result of future climate 

change.  Two General Circulation models were used to predict future changes: HADCM2 

and CSM.  The models were forced by estimated historical and projected future 

anthropogenic factors.  Both models project much larger changes in the scale parameter 

than the shape parameter.  Model differences existed in the patterns of change at regional 

scales for the parameters, but not at the area-averaged continental scale.  This suggests 

the models differ in sensitivity to factors at the regional scale.  Both models projected a 
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small increase in winter wet days and small decrease in summer wet days.  An increase in 

total precipitation that was the results of extreme and heavy events was also projected.  

Cubasch et al. (1995) simulated three 20-year periods based on the following 

scenarios: (1) present day CO2 levels; (2) doubling of CO2; and (3) tripling of CO2 using 

a T42 atmosphere model.  The annual temperature and precipitation cycle over IPCC 

regions were analyzed.  The temperature simulations had much greater accuracy than the 

precipitation simulations based on observed data.  Precipitation amounts were 

underpredicted and did not show a clear signal of change in amount; however, the rainfall 

intensity did shift with more high intensity and fewer low intensity storms in each season.  

Cubasch et al. (1995) found a negative correlation between temperature and precipitation. 

Dore (2005) summarized literature findings that pertain to climate change and the 

effects on global precipitation patterns.  The summary suggested an increase in 

precipitation variance everywhere.  A 2% increase in global precipitation has occurred 

throughout the twentieth century.  While this increase is statistically significant, it is not 

spatially nor temporally uniform.  Wet areas are becoming wetter, while dry areas are 

becoming drier.  Precipitation is increasing at higher latitudes and decreasing in China, 

Australia, and Small Island States in the Pacific, while the variance is increasing at the 

equator.   

Hayhoe et al. (2007) observed past and future changes in the Northeast of many 

climate change components including temperature, rainfall, drought, snow cover, soil 

moisture, and streamflow using nine GCMs to reproduce observed changes in these 

indicators as well as project future changes.  B1, A2, and A1F1 emissions scenarios from 

the IPCC were analyzed.  The results showed much uncertainty surrounding simulated 
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trends in precipitation.  The average simulated annual trend equaled 0.7 +/- 3 mm/decade 

for the past century and 7 +/- 18 mm/decade for the years 1970-2000.  The models 

proved to be more accurate in simulating winter trends than summer trends.  Future 

projections from all models suggested an increase in winter but not summer precipitation, 

with a range from 12-30% increase in winter and 2% decrease to zero change in summer 

months depending on the emissions scenario.  The simulated annual increase in 

precipitation ranged from 7-14% depending on the emissions scenario.  Temperature was 

expected to increase by the year 2100 for every scenario, ranging from 2.9 to 5.3 degrees 

Celsius.  Temperature driven trends such as seasonal warming, greater spring 

streamflows, extended growing seasons and early blooming, less snow cover, and an 

increase in droughts and low flows are expected to increase.  These trends proved to be 

more sensitive to the A2 and A1F1 scenarios than to the B1 scenario.  

Kharin and Zwiers (2000) analyzed the changes in extreme temperature, 

precipitation, and wind speed using the GCM from the Canadian Centre for Climate 

Modeling and Analysis.  The IPCC 1992 Scenario A2 was used to determine changes in 

CO2 and surface albedo over the period of study, 1900-2100.  Extremes were analyzed in 

three 21-yr periods centered around the years 1985, 2050, and 2090.  The simulated daily 

data was fit to a Generalized Extreme Value (GEV) distribution using L-moments and 

then return period values were calculated by inverting the fitted GEV distributions.  The 

results showed a global increase in extreme precipitation.  For the 20-year return period, 

the global average increase from 1985-2050 and 1985-2100 in 24-hour precipitation was 

6.9 mm/day and 12.2 mm/day, respectively.  The increases in annual mean precipitation 

during the same time periods were 1% and 4%, respectively.  A relation between the 
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changes in the maximum and minimum temperature and the changes in the mean screen 

temperature, soil moisture, and snow and ice cover was found.  Modest changes were 

determined in extreme wind speed over the extratropics.   

Hennessy et al. (1997) analyzed the changes in precipitation based on an 

equilibrium doubling of CO2 using the UKH1 and CSIRO9 global climate models.  The 

existing C02 scenario in the UKH1 model equaled 326 ppm while the CSIRO9 model 

equaled 323 ppm. The UKH1 suggested a 3.5 degree Celsius increase in temperature and 

9% increase in global average precipitation, while the CSIRO9 suggested a 4.8 degree 

Celsius increase in temperature and an 11% increase in global average precipitation.  

Regionally, more intense convective events are expected in middle and low latitudes, 

while events will remain nonconvective but increase in intensity in high latitudes.  In the 

United States, Europe, Australia, and India, events with return periods greater than or 

equal to 1-year will increase by 10-25%.  For a given precipitation intensity, the return 

period is expected to decrease on average by a factor ranging from 2 to 5. 

Kharin et al. (2006) analyzed potential future changes in temperature and 

precipitation extremes using multiple global coupled climate models and the SRES B1, 

A1B, and A2 emissions scenarios.  Changes were recorded from the time period of 1980-

2000 to two different future time periods: (1) 2046-2065 and (2) 2081-2100.  An extreme 

event was defined as the 20-year return period or greater.  The study showed that relative 

changes are expected to be greater in extreme precipitation rather than mean precipitation 

changes.  Return periods will be reduced everywhere as a result of these scenarios except 

for a few sub-tropical regions.  For the 20-yr return period, the study suggests a 6% 

change in the 24-hour precipitation depth for every degree Kelvin change in temperature. 
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Groisman et al. (2004) analyzed changes in intense precipitation over land due to 

increases in greenhouse gas emissions.  Projections from three GCM simulations for the 

20th and 21st centuries with increasing greenhouse gas emissions were also analyzed.  

Intense precipitation events were defined as the top 0.3% of daily precipitation events.  

The results showed an increase in heavy precipitation in mid-latitudes in the past 50-100 

years.  Model projections suggested future increases in heavy precipitation events as well. 

Semenov and Bengtsson (2002) analyzed changes in the mean daily precipitation, 

precipitation intensity, wet day frequency, and gamma distribution parameters based on 

increasing greenhouse gas concentrations in the atmosphere from the 20th to the 21st 

century.  The coupled atmosphere-ocean general circulation model ECHAM4/OPYC3 

was used to conduct the analysis and the IS92a “business as usual” scenario was used as a 

forcing.  Trends observed from 1900-1900 increased in magnitude significantly during 

the 21st century.  Over all land territories, the mean precipitation intensity and scale 

parameter increased in the 21st century.  The number of wet days decreased everywhere 

but in the high northern latitudes.  The mean precipitation changes varied regionally.  In 

the eastern United States, the increase in mean precipitation was greater than the 

interdecadal variation and the increase in precipitation intensity showed a clear positive 

trend of about 20%.  The number of wet days exceeding the 90th percentile increased 

significantly by about 30%.   

Nichols et al. (2002) analyzed summer and non-summer precipitation data from 

1956 to 1996 for the USAD-ARS Walnut Gulch Experimental Watershed for trends.  The 

data were categorized by the number of events, the event precipitation depth, the 30-

minute event intensity, and the event duration.  Linear regression was used to determine 
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trends of seasonal precipitation statistics including minimum, maximum, mean, and 

variance.  The results showed an annual increase in precipitation, most likely resulting 

from an increase in the frequency of the precipitation in the non-summer months.  While 

the frequency increased, the other three criteria did not increase in the non-summer 

months.  For the summer precipitation records, the frequency of events increased, but the 

average precipitation per event decreased. 

2.1.11 Climate Change Studies: Changes to Streamflow 
 

Dai et al. (2009) assessed the streamflow from 925 of the largest rivers in the 

world.  Historical monthly streamflow data from 1949 to 2004 was used.  The results 

showed that only one-third of the top 200 rivers analyzed showed statistically significant 

trends.  The majority of this one-third showed negative trends.  The time series showed 

large multiyear variations, and the significance of the trends were sensitive to the time 

period used.  The model was able to assess most of the trends without incorporating 

direct human influences, suggesting that the affects of human activities on yearly 

streamflow for many large rivers is likely small in comparison to natural climate change.  

Among the top 20 rivers, Dai et al. (2009) reported an observed linear trend in the mean 

annual streamflow (km3/yr) ranging from -3.95 to 1.82 (km3/yr2), with the greatest value 

for the Mississippi River. 

Labat et al. (2004) developed a statistical wavelet-based method to reconstruct 

monthly discharges of 221 of the world’s largest rivers.  This data were then assessed to 

determine the affects of climate change on the hydrologic cycle and the influence on 

global and continental runoff in the past century.  Linear regression was used to 

determine a trend between temperature and runoff.  Analyses were conducted for two 
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reference periods: 1900-1975 and 1925-1994.  The first reference period coincides with 

an additional study.  The results showed a more rapid increase by a factor of 3 for the 

second reference period compared to the first reference period.  Overall, the results 

showed a 4% increase in global runoff for every 1 degree Celsius increase in temperature.  

At a regional scale, runoff in North American rivers was most sensitive to climate 

change.  However, it is difficult to determine between anthropogenic and natural causes. 

Lins et al. (2005) assessed trends in streamflow data from 1940-1999 in the 

United States based on data from 435 stream gauging stations.  The nonparametric Mann-

Kendall test was used.  Results showed an increasing trend in discharge in low to 

moderate ranges in the central 2/3 of the United States.  The trend was less significant in 

the Eastern United States.  Few trends were observed in annual maximum flow and a 

systematic shift in the timing of the annual minimum, median, or maximum flow was not 

detected. 

Milly et al. (2005) assessed the affects of climate change on streamflow in the 

twentieth and twenty-first centuries.  Twelve climate models found to have the lowest 

error for analyses based on simulations for observed data in 165 river basins were used to 

project streamflow data for the twenty-first century.  The results showed an increase 

between 10 and 40% in runoff in high latitudes of North America and a decrease in mid-

latitude Western North America by 2050.  The results were based on average annual 

flows. 

 Milly et al. (2002) used streamflow measures and numerical simulations of 

anthropogenic effects of greenhouse gases and other anthropogenic factors to explore the 

risks of floods exceeding the 100-yr level with changing climate.  The analysis focused 
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on 29 large basin facilities with data spanning at least 30 years.  The Log Pearsons type 

III distribution and the method of moments were used to fit the annual maximum monthly 

mean flows and determine the 100-yr flood from the fitted distribution.  Out of the 2066 

station years assessed, the 100-yr flood was exceeded 21 times, with 16 of these events 

occurring in the second half of the record.  This had a 1.3% probability of occurring 

based on a binomial distribution and the assumption that the events were independent.  A 

significant change for lower return periods did not exist; however, the 200-yr flood had a 

significant increase.  Milly et al. (2002) tested the hypothesis that radiatively forced 

climate change was a source of increasing flood risk with a 300-yr ‘idealized CO2 

quadrupling’ experiment in which the mean CO2 concentration increased by 1% until the 

starting concentration was quadrupled.  The results of this experiment showed a change 

in the annual mean discharge but not much change in the monthly maximum discharge.  

The 100-yr flood was exceeded more frequently in all but one basin.  In half of the 

basins, the frequency of the control flood increased to a 12-yr return period as a result of 

radiatively forced climate change. 

Burn and Elnur (2001) conducted a study to determine the hydrologic impacts of 

climate change in Canada by quantifying trends in hydrologic variables and their 

relationship with trends in meteorological variables.  They assessed a spatial distribution 

between catchments that do and do not show trends.  They adopted a systematic approach 

for detecting trends: (1) choose variables: low flow, average flow, high flow, timing, and 

duration; (2) choose stations; (3) use Mann-Kendall to check for trends; and (5) 

determine the significance of a detected trend using a permutation procedure.  Cross 

correlation and serial correlation were considered.  The results showed spatial and 
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temporal differences.  Spatial differences were based on changes in climate with location 

and temporal changes were based on non-uniform meteorological variables. Trends and 

patterns for the hydrologic and meteorological variables showed similarities.  

Hamlet and Lettenmaier (2007) analyzed the changes in flood risk within the 

Western United States as a result of climate change, both on a century- and interannual- 

scale.  The study also analyzed the increased variation in precipitation since the 1970’s.  

Detrended temperature data from the beginning and end of the 20th century temperature 

were used as input to the variable infiltration capacity hydrologic model.  The results 

suggest that the increasing trend of one degree Celsius per century may be related to the 

changes in flood risk within the area.  Most of the temperature changes are the result of 

mid-winter warming.  Hamlet and Lettenmaier found that neither warm rain-dominant 

basins nor cold river basins experienced an increase in flood risk.  However, transient 

intermediate basins experienced a variety of effects and were influenced by additional 

factors, such as antecedent snow and drainage area during storms.  A relationship existed 

between the basin scale and the absolute value of the flood risk change; however, basic 

scale did not influence the relationship between mid-winter temperatures and flood risk.  

The study also suggests that flood risk changes are related to increased variation in 

precipitation.  The greatest changes in food risk show a relationship with the Pacific 

Decadal Oscillation and El Nino Southern Oscillation, suggesting that interannual as well 

as century-scale climate changes must be considered. 

Jha et al. (2006) analyzed the potential effects of climate change on streamflow in 

the Upper Mississippi River Basin.  The Soil and Water Assessment Tool model was 

used to predict streamflow based on six AOGCM climate change scenarios.  Each 
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scenario assumed a doubling of the atmospheric carbon dioxide concentration of 660 

ppmv.  Climate data inputs were based on 111 weather stations in and around the 

watershed.  Landuse, soil, and topography input data were retrieved from the Better 

Assessment Science Integrating Point and Nonpoint Sources (BASINS) Package Version 

3.  The model was calibrated using USGS streamflow data from a gauge located on the 

Mississippi River.  The results showed that over the 20-year simulation period, the six 

AOGCM climate change scenarios provided a change in annual streamflow ranging from 

-6 to 51%.  These results suggest much uncertainty in climate change projections for the 

Upper Mississippi River Basin region. 

 Frey et al. (2010) studied the impacts of climate change on storm surge flooding 

in Corpus Christi, Texas.  Climate factors considered included sea level rise and 

hurricane intensification.  Future climate change conditions were based on three carbon 

dioxide doubling sensitivities: (1) cool, (2) average, and (3) warm and three IPCC carbon 

dioxide equivalent emissions scenarios: (1) AIFI, (2) AIB, and (3) B1.  Physically based 

numerical models were used to predict hurricane winds and the resulting waves, surges, 

and morphological changes of the coastline.  Models were then used to determine the 

resulting flooding and effects on population and infrastructure.  The procedure was 

applied to three hurricanes: (1) Bret, (2) Beulah, and (3) a version of Carla.  The results 

suggested an increase in flood water elevations in Corpus Christi ranging from 0.4 to 1.9 

meters by the 2080’s depending on the hurricane.  The expected increases in economic 

damages range from $270-1,100 million for a variation of Hurricane Carla, $100-390 

million for Hurricane Beulah, and $30-280 million for Hurricane Bret by the 2080’s.  
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These results emphasize the consequences of ignoring the effects of climate change on 

flooding. 

 Xiong and Guo (2004) analyzed annual discharge series of the Yangtze River for 

abrupt and gradual change.  The analyses were conducted for time series from 1882-

2001.  The Mann-Kendall and Spearman’s Rho trend tests, both nonparametric tests, and 

a linear regression and t-test were used to assess gradual trends in the annual maximum, 

minimum, and mean of the time series discharges.  A Bayesian model and the Monte 

Carlo Markov Chain sampling method were used for the single change-point or the 

abrupt change detection analysis of the mean levels in the time series.  The results for the 

trend test showed that at a 5% significance level, the annual maximum flood series did 

not show a significant trend, while the annual mean and minimum flood series showed a 

decreasing trend.  The results for the abrupt change analysis showed that in the past 120 

years, the mean of both the annual minimum and mean discharges decreased.  The 

analyses also showed that the trend term and abrupt change term were very closely 

related. 

Douglas et al. (2000) used a spatially averaged Kendal’s S trend test to analyze 

trends in floods and low flows in the United States over the past 30 years, as well as the 

past 50 years.  With spatially correlated sites eliminated from the study, a trend in floods 

did not exist at the 5% level; however, a trend in low flows did exist in the Midwest and 

in the smaller regions of Ohio, North Central US, and the Upper Midwest.  Ignoring the 

spatial correlation of regional streamflow resulted in more significant trends in both 

categories.  Dougles et al. (2000) attributed the increase in low flows to the increase in 

precipitation observed in the Midwest. 
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Nijssen et al. (2001) used a macroscale hydrological model and a parameter 

transfer calibration method to predict river runoff in different climate zones.  The transfer 

method involved calibrating parameters for nine large river basins and transferring the 

calibrated values within similar climate zones.  The transfer calibration method did not 

reduce the bias or the root-mean-square-error for discharge predictions of individual 

basins, but did for the total of all basin predictions.  Transferring the parameters globally 

caused an increase in precipitation and evapotranspiration prediction compared to a 

previous uncalibrated prediction. 

Charlton et al. (2006) assessed the impact of climate change on surface runoff in 

Ireland.  Patterns of runoff under baseline and future climate scenarios were simulated 

using the rainfall-runoff model, HYSIM, and analyzed for annual and seasonal changes.  

Data output from the HadCM3 Global Climate Model were used as a driver for the 

HYSIM model.  Climate scenarios for two future time periods: 2041-2070 and 2061-

2090, were assessed and changes in the annual and seasonal runoff were examined.  The 

results showed a decrease in annual runoff for both climate scenarios, with the exception 

of a slight increase in a limited part of the Northwest.  Summer runoff decreased in all 

areas of Ireland.  Winter runoff increased in the west.  It is assumed that the increase in 

winter runoff may lead to increases in magnitude and frequency of flooding, while the 

decreases in the summer may result in an increased frequency and duration of low flows. 

Mareuil et al. (2007) assessed the effects of climate change on the frequency and 

severity of floods in the Chateauguay River Basin in Quebec, Canada.  Output from three 

global climate models (GCMs) was combined with a stochastic weather generator and 

used to develop current and future climate scenarios.  The current and future time periods 
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ranged from 1960-1990 and 2040-2060, respectively.  These different climate scenarios 

were input into hydrologic modeling experiments to determine the effects of climate 

change on the frequency and severity of flood events during spring snowmelt and 

summer through fall storms.  Storm return periods that range from 2 to 500 years were 

considered. 

The results for the spring runoff events showed that two of the three GCM derived 

climate series had a statistically significant decrease.  For the summer through fall runoff 

events, one GCM derived climate series had a statistically significant decrease while one 

showed a statistically significant decrease for only the higher return periods.  The third 

GCM derived climate series did not show a statistically significant change in the spring 

or the summer-fall runoff events.  Uncertainties related to the study and the models used 

were discussed. 

Muzik (2002) assessed the effects of climate change on flood frequencies in a 

subalpine watershed in the Rocky Mountains of Alberta, Canada.  A first-order analysis 

was conducted in which rainfall intensity changes were considered to have the most 

significant effect on future floods.  Two scenarios based on changes in the parameters of 

the Gumbel distribution for rainfall were used in the study.  The first was a 25% increase 

in both the mean and standard deviation and the second was a 50% increase in the 

standard deviation.  Rainfall increase estimates were based on a literature review, 

transposition of southern climates, and general circulation model projections.  The results 

showed that up to the 50-year return period, the first scenario resulted in much greater 

changes in flood discharges than the second scenario; the discharge values for the two 

scenarios converge at the 500-year return period; and scenario 2 did not have a significant 
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effect on storms less than a 2-year return period.  The 100-yr peak flow is projected to 

increase by 40.9% and 35.3% for scenarios 1 and 2, respectively.  These results suggest 

that even small to moderate rainfall intensity increases that are predicted to occur from 

climate change may have a significant effect on flooding. 

Knowles and Cayan (2002) conducted a study to determine the effects of 

temperature increases on the Sacramento/San Joaquin Watershed and the San Francisco 

estuary.  The Bay-Delta Watershed Model was used to predict delta outflows for the 

following scenarios: (1) temperatures from 1965-1987; (2) projected temperatures for 

2030; (3) projected temperatures for 2060; and (4) projected temperatures for 2090.  The 

outflow model predictions for each future scenario were compared to the outflow model 

predictions for the years 1965-1987.  The differences between the future and previous 

time periods were added to existing outflow data for the 1965-1987 time period to 

develop four sets of outflows based on existing data and projected increases.  The 

Uncles-Peterson (U-P) estuarine model was used to simulate estuary processes.  The 

results show that by 2090, temperature increases will have caused a decrease of about 

50% in the watershed’s total April snowpack.  This is projected to effect outflows from 

the watershed by increasing runoff peaks before April and decreased flows caused by 

snow-melt after April.  The historical annual flow volume is projected to decreasing by 

about 20% by 2090 for both regions as a result of the decreased April-July runoff.   

Maurer et al. (2010) analyzed the changes in projected streamflow for three Sierra 

Nevada rivers based on climate projections.  Projections based on the SRES A2 and 

SRES B1 emissions scenarios for 11 GCMs were retrieved from the WRCP’s CMIP3 

multi-model data set.  These projected data sets were then downscaled and used as input 
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into two hydrologic models: Sacramento Soil Moisture Accounting Model and the 

variable infiltration capacity model.  The hydrologic models contained difference in 

regards to the computational, time steps, the calibration techniques, and the spatial extent.  

The results showed that despite differences within the models, both produced similar 

changes in monthly streamflow; however, differences existed in extreme flows.  The 

results also showed a shift in runoff from spring to winter.  As winter temperatures 

increase, more snowfall becomes rainfall.  Therefore, streamflow increases in the winter 

and decreases in the spring due to less snowmelt. 

Wegel (2011) analyzed observed floods on the Delaware River for different 

record lengths to determine.  The Gumbel extreme value distribution was applied to the 

observed data for different record lengths to determine the change in return periods for 

varying time periods.  The results showed that the length of the record influences the 

estimate return periods for a given flood. 

2.1.12 Climate Change Studies: Changes to both Precipitation and Streamflow 
 

Lettenmaier (1994) et al. statistically analyzed spatial patterns of average 

temperature, average daily temperature range, precipitation, and streamflow in the United 

States from 1948-88.  Results showed an increase in autumn precipitation in the central 

United States; a streamflow increase from November to April in half of the stations, 

particularly in the north-central United States; and a statistically significant positive 

relationship between precipitation and temperature in roughly 2/3 of the sites.  They 

noted that changes in streamflow may be the result of factors in addition to climate 

change. 
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Douville et al. (2002) studied the effect of increasing greenhouse gas emissions 

and aerosols on the hydrologic cycle.  Changes in precipitation over two time periods: 

1970-2000 and 2070-2100 were compared based on simulations from a coupled 

atmosphere-ocean climate model of the Centre National de Recherches Meteorologiques.  

The SRES-2 scenario was used to determine changes in CO2, CH4, N20, CFC-11, and 

CFC-12 emissions.  Effects on the hydrologic cycle were also simulated, and the 

simulated runoff converted to riverflow using a linear routing method.  The results 

suggested an increase in precipitation throughout the 21st century with the exception of 

the subtropics and mid-latitude continents.  The increase is suggested to be a result of a 

decrease in the water vapour cycling rate, which results in a greater water holding 

capacity of the atmosphere in warmer climates.  Other factors included changes in 

moisture convergence in mid-latitudes and a decrease in precipitation efficiency, 

particularly in summer in the Northern Hemisphere mid-latitudes.  Trends in simulated 

riverflow over recent decades were fairly consistent with the observed data; however, 

combined trends simulated for the 20th and 21st century differed from those found in just 

the 20th century, which implied that simply extrapolating observed trends should not be 

practiced.  Biases in the regional hydrologic analysis revealed the need for downscaling 

techniques. 

Milliman et al. (2008) assessed the global and regional trends of discharge from 

137 rivers based on discharge and precipitation records from 1951-2000.  To determine 

the effect of climate on changes in discharge, precipitation records from this time period 

were also assessed.  The results showed that a global discharge trend did not exist as the 

cumulative discharge for the 137 rivers did not change; however, regional trends did 
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exist.  Ninety-seven rivers showed a change of 10% in discharge.  Of the rivers showing a 

trend, the majority with a positive trend were located in the Americas while negative 

trends were associated with arid and semi-arid regions in Africa, Asia, and Australia.  

Coinciding with the river discharge results, precipitation did not show a global trend but 

did show a significant regional trend.  Milliman et al. (2008) determined whether climatic 

or anthropogenic factors were the key component that affects river discharges.  They 

classified each river as ‘normal’, ‘deficit’, or ‘excess’ rivers depending on the factors that 

influence the river discharge.  Normal river discharge is driven primarily by changes in 

precipitation as both experienced an increasing or decreasing trend; deficit river implied 

an increasing or neutral change in precipitation and a decreasing change in river 

discharge; excess river implied an increasing trend in river discharge and a decreasing 

trend in precipitation.  In North America, the Mississippi River was classified as a normal 

river while rivers in Colorado were classified as deficit rivers. 

Groisman et al. (2001) outlined the changes in the precipitation and snow cover 

the United States to determine their effects on high streamflow.  Both regional and 

national trends were assessed.  Seasonal and annual precipitation changes as well as one-

day and multi-day heavy precipitation were assessed.  For streamflow, the months of 

maximum mean streamflow and the preceding month for each region were the focus of 

the analyses.  The standardized time series for nine United States regions were averaged 

for the streamflow data.  For national trends, it was found that systematic increases in 

precipitation should cause an increase in streamflow over the United States assuming 

changes in evapotranspiration or watershed management do not occur.  Regional trends 

included a fairly close relationship between heavy precipitation and high streamflow 
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events in months of maximum streamflow in regions of the eastern United States.  In the 

western United States, the earlier occurrence of snow melt is believed to influence the 

relationship between heavy precipitation and high streamflows.  Data for the central 

United States were not available to draw conclusions regarding this relationship. 

Fekete et al. (2003) assessed uncertainties of six monthly precipitation data sets 

and the effects of resulting runoff predictions due to these uncertainties.  The results 

suggested that in wet regions, the error in the precipitation was equal to the error in the 

predicted runoff because precipitation exceeds evaporation; in semi-dry regions, the 

runoff error was greater than the precipitation error because runoff-generation is a 

nonlinear function; and in arid regions, precipitation did not provide runoff because 

precipitation does not produce runoff.  

Lettenmaier et al. (1994) analyzed average monthly temperature, precipitation, 

streamflow, and daily temperature range for trends for the continental United States from 

1948-88.  The data for the analysis came from 1036 stations from the historical 

climatology network and 1009 stations from a streamgage network.  The nonparametric 

Mann-Kendall test and Seasonal Kendall test were used to detect trends and a slope 

method was used to determine the magnitude of the trends.  The results showed an 

increase in the March temperature at almost half of the stations.  Precipitation increased 

in the fall in a quarter of the stations, mainly in the central United States.  Increases in 

streamflow in almost half the stations from November to April were detected, with the 

greatest trend occurring in the north-central United States.  A second part of the study 

evaluated relative changes in variables, particularly in regards to streamflow.  A bivariate 

test was used.  The results showed that trends in streamflow were not always consistent 
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with changes in climatic variables, suggesting that water management effects may have 

played a role. 

Using data from the past century, the USGS National Streamflow Information 

Program conducted a study of trends in the water budget of the Upper Mississippi.  

Human influences such as agricultural irrigation and evaporation of water from surface 

reservoirs were cited.  Likewise, climatic influences such as changes in precipitation and 

evapotranspiration processes were explained.  A 2.1 %/decade increase in precipitation 

was reported for the Mississippi River Basin that resulted in a 4.5%/decade increase in 

Mississippi River discharges.  The report also recognized the existence of natural 

variability within the data records. 

2.1.13 Climate Change Studies: Changes to Temperature 
 

Davis et al. (2010) provide a breakdown of CO2 emissions from existing energy 

and transportation infrastructure by the industry sector as well as by country/regions.  

They also provide lower, middle, and upper estimates of the resulting cumulative 

atmospheric CO2 and temperature change for 2060 assuming CO2 emitting infrastructure 

is not expanded.  They predicted a resulting warming of 1.3 degrees Celsius above pre-

industrial warming. 

Meehl et al. (2006) used the Community Climate System Model Version 3 

(CCSM3), a global coupled climate model, to simulate three scenarios: (1) twentieth 

century climate; (2) simulations of three scenarios to 2100 based on emissions scenarios 

from the IPCC; and (3) scenarios of stabilized greenhouse gas concentrations.  The 

results for global averages showed that, even if emissions are stabilized, significant 

warming and sea level rise will be experienced.  The temperature showed signs of 
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leveling off for stabilized scenarios while the sea level rise continued to increase.  This 

increase did not account for melt from ice sheets and glaciers.  The high northern 

latitudes and land areas are predicted to experience the greatest warming. 

Kiehl (2011) used historical observations rather than climate models to discuss 

the potential warming due to increased carbon dioxide.  Kiehl (2011) states that the 

Earth’s CO2 concentrations are increasing to rates that have not existed in 30-100 million 

years, at which time the Earth’s climate was extremely warm compared to current 

conditions.  In addition, historical data implies that the Earth’s sensitivity to CO2 

radiative forcings may be greater than projected by climate models.  Based on these 

observations, it is possible that the Earth will experience climate conditions never 

experienced by the human species at a faster rate than projected by current climate 

models. 

The effect of clouds on the climate is one of the greatest uncertainties in 

understanding climate change.  Some studies suggest that warming will influence clouds 

and counter the effects of greenhouse gases; however, computer models suggest that 

cloud changes will enhance warming.  Andrew Dessler of Texas A & M University 

analyzed the effect of cooling and warming from La Nina and El Nino, respectively, on 

clouds.  Dessler found that on the time scale analyzed, clouds did not counter the 

greenhouse gas warming effect.  He found a small positive feedback, which would 

suggest warming, but could not eliminate the possibility of a small negative feedback as 

well.  Regardless, the results did not support the possibility of a large negative feedback, 

which would result in cooling (Kerr 2010). 
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Kerr (2009) reports that the loss from ice sheets in Greenland and Antarctica have 

accelerated in the past seven years. The results were based on measurements from the 

Gravity Recovery and Climate Experience (GRACE) satellite missions.  This contradicts 

results that the shrinking of the southeastern Greenland glaciers had slowed.  The 

inability to extrapolate these short term findings into the future is emphasized. 

 Kaufman et al. (2009) analyzed warming and cooling trends in the Arctic for the 

past 2000 years.  They compiled available climate records from above 60 degrees north 

with record lengths greater than 1,000 years at annual to decadal time periods.  Data from 

23 sites that contained paleoclimatic records based on lake sediment, glacier ice, and tree 

rings were analyzed.  The data was compiled based on 10-yr mean temperatures and 

standardized relative to the reference period 980 to 1800.  Kaufman et al. (2009) found 

that a cooling trend occurred from 1 C.E. to 1900 C.E. The twentieth century, however, 

showed an increasing trend including four of the five warmest decades occurring between 

1950 and 2000. 

Despite projections by the IPCC for warming of 0.2 degrees Celsius from 1999 

through 2008, the past decade showed a flat trend.  The Hadley Centre group used 

climate models to try to quantify the likelihood of a decade long warming pause.  700 

years of 20th century climate data were simulated based on 10 modeling runs.  The 

century long warming equaled 2 degrees Celsius as expected.  However, within the 700 

years, 17 independent 10-yr time period experienced trends resembling the past decade.  

Scientists explain that this is the result of natural variability.  Models did not suggest 

pauses greater than 15 years, which suggest that warming will continue in the next few 

years. 
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2.1.14 Climate Change Engineering 

Hegerl and Solomon (2009) discussed the risks involved in climate engineering.  

Geoengineering solutions aim to counteract the effects of climate change and remain a 

controversial topic among climate scientists.  One criticism is that studies focus too much 

on how to counteract warming without evaluating additional risks involved.  A need 

exists for emphasis on both benefits and risk of geoengineering.  For example, one 

solution is to reduce increasing incoming solar radiation by increasing atmospheric 

reflecting particles or positioning reflective mirrors beyond the atmosphere.  This would 

provide a quick solution to warming; however, risks can be analyzed through the effects 

of volcanic eruptions in the past, which caused massive cooling followed by drought due 

to the decrease in evaporation.  Models have captured changes in precipitation in the 

20thcentury due to greenhouse gases; however, the magnitude of these changes has been 

underestimated.  This suggests that an external forcing may be missing that influences 

precipitation.  Therefore, methods that only target warming may have additional effects 

on the climate.  Until these processes are fully understood, emphasis on the risk as well as 

the benefits of geoengineering must be made. 

2.2 Landuse Change Studies 
 
2.2.1 Introduction 

 As population increases and technology advances, changes in land use will 

continue to occur.  Land cover has a significant impact on the velocity and quantity of 

runoff within a watershed.  Variables accounting for land cover or landuse exist in the 

Manning’s Equation, the SCS Method, and the Rational Method as the Manning’s 

roughness coefficient, the curve number, and the runoff coefficient, respectively 
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(McCuen 2005).  Therefore, it is reasonable to assume that as land cover or land use 

changes in a watershed, the characteristics of runoff would change as well.  Research 

exploring the effects of land use change, particularly in regards to agricultural and 

urbanization changes, on runoff characteristics will be discussed herein. 

2.2.2 Urbanization Land use Changes 

Bronstert et al. (2002) discussed the effects of land-use and climate change on 

storm runoff generation.  They discussed the possible effects of climate change and 

landuse change on storm water runoff, models that showed the hydrologic responses to 

these changes, and two studies conducted in Germany.  The first and second case studies 

showed the effects of climate change and land-use changes, respectively, on storm runoff 

production in catchments in Germany.  The land use case study analyzed the hydrologic 

effect of potential future land use scenarios using the hydrologic model WaSiM-ETH.  

Urbanization was the main focus of the land use analysis.  The results showed that land 

use had a greater influence on flooding caused by high rainfall intensities than low 

rainfall intensities.  

The United States Geological Survey (USGS) developed a regression equation to 

predict peak discharge rates for urbanization that results in an impervious area of 15% or 

greater (Sauer et al. 1981).  The equation depends on factors such as the impervious 

cover and the rural peak discharge for the area.  Values of the rural peak discharge for a 

specific return period of interest are available for all locations through the USGS.   

The USGS conducted a nationwide study to develop a method of predicting urban 

peak discharge at ungauged site (Sauer et al. 1983).  269 gauged basins in 31 states were 

used to design regression equations for the 2-yr, 5-yr, 10-yr, 25-yr, 50-yr, 100-yr, and 
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500-yr flows.  Three models were developed, two consisting of seven independent 

parameters and one consisting of three independent parameters.  The seven parameter 

models included basin development factor, impervious area (%), drainage area, slope, 

rainfall intensity, basin lag time, and lake or reservoir storage depending on the model.  

The three parameter model consisted of rural discharge, basin development factor, and 

drainage area.  The three models provided unbiased estimates of flood frequency with a 

standard error of regression ranging from +/- 37% for the 5-yr flood and +/- 49% for the 

500-yr flood. 

 Moglen and Shivers (2006) developed a method to adjust rural peak discharge 

values to urbanized conditions.  The method can be applied nationally based on seven 

available models, each varying in complexity and input parameters.  The Null Model is 

the simplest model and requires only rural peak discharge as an input.  The Simple 

Impervious Model consists of moderate complexity and requires the rural peak discharge 

as well as the percent impervious area within the watershed.  The Simple Population 

Density Model consists of the same structure as the simple impervious; however, 

population density is used as an indicator of impervious area.  The Imperviousness 

Distribution model has moderate to high complexity and contains an additional input 

variable, the 10th and 90th percentile of urbanized are within the watershed.  This 

variable represents the level of homogeneity within the watershed.  Likewise, the 

Population Density Distribution model requires the 10th and 90th percentile of 

population density within the watershed.  The final models are the Scaled Impervious and 

Scaled Population Density Models.  These models take into account the argument that the 



www.manaraa.com

effect of impervious area on runoff is not linear, and includes a scaled value of the input 

parameters, either impervious area or population density.   

Moglen and Shivers (2006) applied each of these models to watersheds 

throughout the United States and analyzed the goodness-of-fit and physical rationality of 

each.  The results showed that different models performed the best based on the 

coefficient of determination and standard error ratio based on the return period analyzed.  

The Impervious and Population Density Distribution Models perform slightly better 

overall, with the impervious model providing slightly better predictions than the density 

model.  However, the variation in goodness-of-fit values ranged from 0.779 to 0.909 for 

the coefficient of determination and 0.257 to 0.48 for the standard error ratio.  This 

suggests that each model performs well based on the goodness-of-fit statistics.  Analysis 

of the parameters, however, suggests that the population density models, with the 

exception of the density distribution model, contain non-rational trends in one or more of 

the model exponents.  Therefore, the Population Density and Impervious Area 

Distribution Models provide the best predictions based on physical rationality and 

goodness-of-fit. 

De Roo et al. (2003) used the LISFLOOD catchment model to determine the 

effects of flood defense methods and landuse change on flooding in the Oder basin, 

covering parts of the Czech Republic, Poland, and Germany.  The model was calibrated 

and validated for the flood events of 1977, 1985, and 1997.  The study showed that the 

measures of flood defense proposed by the International Oder Commission significantly 

improve and reduce flood risk.  The model showed that reforestation reduces flood peaks, 

while future urbanization causes a slight increase in peak discharge.  However, the 
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authors noted that the data used to simulate the model had higher amounts of rainfall in 

more rural and mountain areas as opposed to urban areas.  Therefore, if higher rainfall 

amounts occurred over urban areas, the effect of urbanization can be assumed to be 

greater. 

Todd et al. (2007) conducted a study to establish the relationship between land 

use change, climate, and watershed hydrology in the area of Indianapolis, Indiana.  

Historical precipitation and streamflow data were assessed for significant trends.  The 

Mann-Kendall Rank Correlation Test was used to detect and determine the significance 

of any trends.  A hydrologic model was also used to predict surface and subsurface water 

flows for multiple historical land use scenarios.  The results did not show a statistically 

significant increasing trend in precipitation; however, a significant trend for streamflow 

and baseflow did exist.  This would suggest that land use changes as opposed to climate 

changes over time are influencing watershed hydrology in the Indianapolis area.  

However, the hydrologic modeling approach did not show the same effects of land use 

changes.  Using land use data from the years 1940 and 2000, the model resulted in a 

slight increase in baseflow, a decrease in runoff, and a decrease in evaporation over time. 

Beighley et al. (2009) analyzed the effects of impervious area estimation methods 

on simulated peak discharge.  Two data estimation methods were used: (1) high 

resolution aerial photographs and (2) medium resolution satellite data.  The results 

showed that the different methods resulted in a difference in peak discharge estimates of 

16% and 9% for the 2-year and 100-yr storm, respectively, at the watershed scale for the 

Mission Creek watershed in Santa Barbara, California.  At the model unit scale, these 



www.manaraa.com

differences increased to over 41 and 21%, respectively.  This suggests the sensitivity of 

peak discharge to impervious area. 

 Glick (2009) analyzed the effects of impervious cover on stormwater quality and 

quantity at 38 stormwater monitoring stations in Austin, Texas.  The results showed a 

relationship between impervious cover and mean concentration of pollutants with a 

correlation coefficient equal to 0.75. 

 Kauffman et al. (2009) analyzed nineteen watersheds near the University of 

Delaware campus with impervious areas ranging from 3 to 44% to determine the effects 

of urbanization.  They found that a relationship exists between impervious area and dry 

weather stream baseflow.  This suggested that increased impervious area reduces 

infiltration capabilities, thus reducing groundwater recharge.   

Hundecha and Bardossy (2004) analyzed the effects of land use change using a 

conceptual rainfall-runoff model.  Model parameters were calibrated regionally based on 

land use, soil type, catchment size, and topographic structure.  Regional parameter values 

were then transferred to a catchment scale for each individual basin.  Results suggested 

that urbanization causes an increase in summer peak discharge values and a small 

increase in winter peak discharge values.  Afforestation causes a decrease in both peak 

and total runoff volume. 

 Endreny et al. (2009) analyzed the effects of impervious area on hydrologic 

model parameters and compared the use of NLCD land use data with road-enhanced 

NLCD land use data.  704 watersheds in New York were analyzed under impervious area 

conditions of 1992 and then of 2001.  The results showed that the road enhanced data 

provided a significant increase in impervious area in both 1992 and 2001, resulting in an 



www.manaraa.com

increase in hydrologic parameters, including the curve number, runoff coefficients, and 

event mean concentration based pollutant loads.  These findings suggested that 

impervious roadways have a significant impact on hydrologic measures and road 

enhanced NLCD should replace original NLCD data. 

 Moscrip and Montgomery (1997) analyzed six lower order streams in the Puget 

lowlands in Washington regarding the effects of urbanization from 1940-1950 to 1980-

1990.  The urbanization records and flood frequencies for each basin were retrieved.  The 

discharge records for each basin were separated into pre- and post-urbanization time 

periods.  Two of the basins were used as control basins, as they did not show significant 

changes in land use.  The results showed that the basins experiencing urbanization 

changes also experienced shifts in flood frequency, whereas the control basins did not 

show any changes in flood frequency.  The 10-year flood shifted between the 1-year and 

4-year flood within the basins experiencing urbanization.  A decline in salmon abundance 

was also observed in the urban basins.  The results of this study suggested that 

urbanization causes decline in salmon as well as changes in flood frequency. 

 Konrad et al. (2005) analyzed the influence of urbanization on interannual 

streamflow patterns in 16 streams in the Puget lowlands of Washington.  They used the 

following metrics to analyze the data: (1) fraction of time that streamflow is greater than 

the mean (TQmean); (2) the annual peak streamflow coefficient of variation (CVAMF); and 

(3) the fraction of time that discharge is greater than the 0.5-year flood (T0.5).  

Urbanization was measured based on the road density within the watersheds using 

geographic information systems.  The results suggest a relationship between streamflow 

and urban development, as road density had a significant positive relationship with 
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Q0.5and QAMF, but not the mean discharge or the duration for which a flow is exceeded.  

The annual peak discharge contained less variation in streams within urban watersheds.  

The study also analyzed the effects on channel form and stability.  The results show that 

models to predict channel width had the lowest standard error when based on Qmean and 

Q10, suggesting a strong relationship.  Analysis of T0.5 suggests that urban areas 

experience a brief duration of frequent high flows.  An inverse relationship existed 

between streambed stability during the 0.5-year flood and the T0.5, suggesting that urban 

streams experience an increase in streambed disturbance. 

 Mejia and Moglen (2009) analyzed the relationship between the spatial patterns of 

urban development and flood conditions through an optimization approach.  The 

objective functions in the optimization approach represented the following different 

spatial patterns: (1) clustered development at most downstream locations in watershed; 

(2) development distributed uniformly in watershed; (3) clustered development at 

upstream headwater locations; and (4) clustered development at downstream locations 

with low density development throughout the watershed.  The aggregate impervious area 

in Option 4 was kept below an optimized policy threshold to explore the effect of 

implementing such a threshold.  The results showed that option 1 reduced flood peaks 

throughout the entire stream network.  In option 2, all locations within the stream 

network experienced the same hydrologic effects due to the even distribution of 

urbanization.  Option 3 had the most negative hydrologic effects on the watershed.  The 

results for Option 4 suggested that implementing an aggregate imperviousness policy 

threshold may be beneficial in reducing the effects of urbanization. 
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Reed (1990) analyzed the watershed of Valley Creek at the Schuylkill River to 

assess the effects of land use changes on flood frequency and hydrograph characteristics.  

Five phases of the watershed conditions were defined and discussed.  Phase 1 consisted 

of a heavily forested watershed with high soil infiltration and subsurface processes that 

dominated the surface runoff.  The peak was lower and flooding occurred less frequently 

than under existing conditions.  As a result, the stream channel was not as wide or deep 

as today.  This phase was estimated to have occurred in the 1600’s.  Phase 5, occurring in 

the 1990’s, was classified as poor watershed conditions.  Forest exists only in the least 

productive soils and steep slopes.  Woodlands and agriculture land use have decreased 

the most compared to other land use types since 1970.  Reed (1990) used the SCS TR-55 

method to simulated the five phases and compare the hydrologic characteristics of the 

watershed.  The results showed that peaks doubled over the 300-yrs with land use 

changes.  The increased peak resulted in an impaired fluvial system. 

 McCuen and Thomas (1990) explained methods to estimate urban flood 

frequency when assumptions of independence and stationarity are not valid.  The 

methods explained are as follows: (1) the use of statistical tests to select a homogenous 

period of record; (2) determination and removal of peak discharge trends, followed by the 

application of a frequency analysis to the residuals; (3) adjust the annual peak discharge 

to homogeneous conditions based on an urbanization index; and (4) use a calibrated 

watershed model and climatic data to simulate a homogeneous series of data.  The four 

methods were applied to an urban watershed in Louisville, Kentucky.  The results 

showed that each of the four methods provided comparable estimates for the 100-yr 

flood. 
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2.2.3 Agricultural Land use Changes 
 

Fitzpatrick et al. (1999) used geomorphic field techniques and hydrologic 

modeling to assess the effect of land use changes resulting from human actions since the 

1870’s on flooding and sedimentation in North Fish Creek in Wisconsin.  The HEC-1 

rainfall/runoff model was used to conduct the hydrologic modeling analysis.  The land 

use scenarios were modeled including pre-settlement conditions of forested land cover, 

peak agricultural conditions occurring in the mid 1920’s to the mid 1930’s, and current 

land cover conditions.  The results show that when agricultural activities were at a 

maximum, in the 1920’s and 1930’s, the peak flows that occur on an average of 2-year 

intervals were predicted to be three times greater than pre-settlement conditions.  Under 

current land cover conditions, flood peaks of storms that occur at two-year intervals were 

predicted to be twice as great as pre-settlement conditions.  Sediment loads during the 

maximum agricultural conditions were 2.5 and up to 5 times greater than under current 

and pre-settlement land cover conditions, respectively.  This suggests that land cover has 

an effect on flooding and sedimentation, while afforestation practices may decrease flood 

peaks and, therefore, decrease erosion and sedimentation. 

Moussa et al. (2002) analyzed the human influence on flooding in regards to 

agricultural practices such as tillage practices and ditch networks.  It was assumed that 

tillage influences infiltration rates while ditch networks affect the transport of water from 

the agricultural field the catchment outlet, both influencing flooding.  The spatially 

distributed hydrologic model, MHYDAS, was developed and tested on the farmed 

catchment of Roujan in Southern France.  Three flooding events were simulated: (1) 30 
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April 1993; (2) 31 August 1994; and (3) 30 September 1994.  The water table levels were 

high during the spring and fall flooding event and low during the summer flooding event.   

 For the tillage practice analysis, three scenarios were assessed: (1) all vineyard 

fields are non-tilled; (2) all vineyard fields are tilled; and (3) all fields, vineyards, and 

other land uses are freshly tilled.  The results showed that for all three flooding events, 

the freshly tilled scenario had the greatest reduction in the value of the peak discharge but 

not the timing.  In the summer flood event, the major hydrologic process was the flow 

from the ditch to the groundwater, which is expected considering the low water table.   

 For the ditch network analysis, a man-made ditch network was compared to 

drainage based on a digital elevation match.  For the three flood events, the man-made 

ditch network accelerated the runoff by causing concentrated flow and lacking natural 

obstacles.  Also, when the water table was lower than the ditch network, much of the 

runoff produced at the field scale was infiltrated into the groundwater.   

2.2.4 Hydraulic Geometry Relationships 
 

Hydraulic geometry relationships have been developed that relate watershed 

characteristics to stream channel geometry.  Bankfull flow is defined as an event that fills 

a channel to the active floodplain elevation, which influences channel dimensions.  Sweet 

and Geratz (2003) analyzed the bankfull hydraulic geometry relationships for the North 

Carolina’s Coastal Plains.  Channel dimensions were collected based on cross-sectional 

and longitudinal survey data from streams.  Power models were fit to relate drainage area 

to bankfull discharge as well as cross-sectional area, width, and mean depth of a channel.  

Likewise, Dunn and Leopold (1978) developed graphical relationships between bankfull 
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flows versus drainage area for channels in Pennsylvania and Wyoming in addition to 

graphical relationships between bankfull flows and channel velocity, depth, and width.   

2.3 Trend Detection Methods 
 

Radziejewski and Kundsewica (2004) assessed the necessary strength and length 

for change in data to be detected statistically as a trend.  Generated data for river flow 

records lacking trends were used and altered to contain gradual and abrupt trends.  The 

performance of different tests was compared: Mann-Kendall, Spearman’s Rank 

correlation, Normal Scores Linear Regression, Distribution-Free CUSUM, and 

Cumulative Deviations applied to normal scores.  The results showed that neither weak 

changes nor changes over a short time period can be detected. 

Strupczeqksi et al. (2001) reviewed the use of statistics of extremes in hydrology 

and characteristics of hydrological extremes.  They focused on climate-related issues 

such as variability and change.  Recent developments in statistics of extremes were 

introduced such as the point process model that combined the block maxima and the 

point-over-threshold method; estimation techniques were compared.  Trends in 

hydrologic extremes as a result of global warming were also discussed. 

Yue and Pilon (2004) used Monte Carlo simulation to compare the power of the 

following statistical tests in determining the significance of linear and nonlinear 

monotonic trends: (1) parametric t-test, (2) non-parametric Mann-Kendall test, (3) Boot-

strap based slope test, and (4) bootstrap-based MK test.  The results showed that the slope 

based tests, t-test and BS-slope test, were equally powerful and the rank based tests, 

Mann-Kendall and bootstrap-based MK test, were equally powerful.  The slope tests were 

slightly more powerful for normally distributed data and the rank tests were slightly more 
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powerful for non-normally distributed data.  The power of the test was slightly sensitive 

to the shape of the trend. 

Frei and Schar (2000) developed a methodology to assess frequency trends in rare 

and extreme weather events using the binomial distribution and logistic regression 

method for trend estimating and testing.  They determined the detection probability, 

which was a quantitative estimation of the Type II error, based on Monte Carlo-simulated 

surrogate records.  The detection probability was a function of record length, average 

return period, and magnitude of trend.  The method was applied to data in Switzerland.  

The results showed difficulty in detecting frequency trends of rare events and the 

importance of long records of data. 

 Khaliq et al. (2009) assessed the results of trend detection methods in the presence 

of serial and cross correlation.  They reviewed methods of trend detection, including 

Mann-Kendall, Spearman Rank correlation, Sen’s slope, and the least squares regression.  

The first two methods are rank based while the latter two are slope based methods.  

Methods addressing the effects of cross and serial correlation were introduced.  The study 

used annual mean daily flows of Canadian River basins.  The results showed that 

ignoring the presence of cross and serial correlation can cause in erroneous results.   

Zhang et al. (2004) compared methods of detecting significant linear trends in 

extreme values using Monte Carlo simulations.  For the Monte Carlo simulations, 

precipitation data that contained pre-determined trends were simulated.  The simulated 

frequency of precipitation in each year was based on the normal distribution, while the 

precipitation depths were based on the exponential distribution to develop extreme data.  

The results showed that the ordinary least squares test to be the least reliable.  Kendall’s 
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tau-based method was more powerful than the OLS method, but the advantage decreased 

as the sample size decreased.  The Generalized Linear Regression Method in the GEV 

distribution was more powerful than OLS and Kendall’s tau-based method, but it was 

better when only estimating one parameter.  The r-largest method was consistently better 

than both the OLS and Kendall method, and improved upon the GEV method when more 

than one extreme per annual block was used.   

Kundzewicz et al. (2004) provided guidance regarding methods of detecting 

changes in hydrological time series.  They discussed suitable data sets, statistical tests, 

exploratory analysis, and interpretation of results for change detection in hydrological 

records.  Methods of trend detection discussed included distribution free methods as well 

as resampling and bootstrap methods for data.  They suggested a greater use of 

distribution-free methods because hydrological data are often non-normal and contain 

seasonal and serial correlations.  They also recommended resampling techniques because 

they require few data assumptions and are flexible, robust, and powerful.  The need to 

examine external evidence to determine if changes are caused by land use, climate, or 

other changes in area was also emphasized. 

Yue et al. (2002) used Monte Carlo simulation to explore the power of the Mann-

Kendall and Spearman’s rho tests in detecting monotonic trends.  The tests were applied 

to annual maximum daily streamflow data from 20 pristine basins in Ontario, Canada.  

The results suggest that the power of the tests increase with an increase in the magnitude 

of the trend and sample size and decrease with an increase in the amount of variation 

within the time series.  The power is also influenced by properties of the data such as the 

distribution and skewness.  The tests had similar levels of power in detecting trends. 
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Statistical tests for the detection of change points within a time series are also 

important in hydrologic and climate data.  Change points in time series can be defined as 

the time at which the statistical characteristics of the data change.  Reeves et al. (2007) 

provides a summary of the existing change point detection methods where the time series 

contains a single change point.  Table 2-2, provided from Reeves et al. (2007), shows the 

hierarchy of regression models that can be tested using the existing change point 

detection tests and methods.  Models 1 and 2 suggest that a change point does not exist.  

Models 3 through 5 suggest that a change point does exist.  Model 3 consists of a change 

in mean for a zero slope model; Model 4 consists of a change in mean with a non-zero 

slope; and Model 5 consists of both a change in mean and slope at the change point 

location. 

 

 

Table 2-2. Hierarchy of Models Provided by Reeves et al. (2007) 
in which c Denotes the Change Point Location. 

Model 1 Yt=μ + t 

Model 2 Yt=μ + t + t 
Model 3 Yt=μ + I(t>c) + t 
Model 4 Yt= μ + 1t + I(t>c) + t 
Model 5 Yt= μ + 1t + I(t>c)+ 2t*I(t>c) + t 

. 
Table 2-3 shows the single change point test statistics explained and compared by 

Reeves et al. (2007).  Each test statistic depends on the assumption that at most, only one 

change point exists within a time series.  Additionally, many tests assume that the 

residuals are independent and identically and normally distributed.  For each statistical 

test, the null hypothesis determines which model Table 2-3 is tested.
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Table 2-3. Existing Single Change Point Detection Tests. 

Test Ho Ha Test Statistic Assumptions 
Standard 
Normal 
Homogeneity 
(SNH) 

Zt ~ N(0,1), 
1<=t<=n 

Z t~ N ( ,0), 
1<=t<=c 
Zt ~ N ( ,0), 
c+1<=t<=n 
where c = 
change point 
location 

T0=max(TC), 1<=c<n 
with 
TC=c  + (n-c)*  

Where =  and 

=  

where Zt =  

1) At most one 
change point 
within the time 
series 
2) 
Standardization 
produces normal 
variables with 
unit variance 

Nonparametric 
Standard 
Normal 
Homogenity  
(NPW) 
 

 

 
 Wmax = max(WC) 1<=c<=n 

where  

Wc=12  

where c = change point location 
and r is the rank of the tth element 
in the series 

1) At most one 
change point 
within the time 
series 
 

Two-Phase 
Regression 
Model 
(Hinkley 1969, 
1971) 

 

 
 

 

Fmax = max(FC) 1<=c<n where  

FC=  ~ F2,n-4 

where SSE0 and SSEA are the sume 
of the squared errors under H0 and 
HA, respectively, and the following 
model: 

Yt=  

where x1<=x2<=…..<=xn and 

where c = change point location 

1) At most one 
change point 
within the time 
series 
2) Errors, , are 
zero mean, 
independentand 
identically, 
normally 
distributed 

Revised Two-
Phase 
Regression 
Model (Lund 
and Reeves 
2002) 
(LR) 

 

 

 

 

 

Fmax = max(FC) 1<=c<n where  

FC=  ~ F2,n-4 

where SSE0 and SSEA are the sume 
of the squared errors under H0 and 
HA, respectively, and the following 
model: 

Yt=  

where x1<=x2<=…..<=xn and 

where c = change point location 

1) At most one 
change point 
within the time 
series 
2) Errors, , are 
zero mean, 
independentand 
identically, 
normally 
distributed 

Two-Phase 
Regressin with 
Common 
Trend 
Wang (2003) 
(XLW) 

 

 

 

 

Fmax = max(FC) 1<=c<n where  

FC=  ~ F2,n-3 

where SSE0 and SSEA are the sume 
of the squared errors under H0 and 
HA, respectively, and the following 
model: 

Yt=  

where x1<=x2<=…..<=xn and 

where c = change point location 

1) At most one 
change point 
within the time 
series 
2) Errors, , are 
zero mean, 
independentand 
identically, 
normally 
distributed 
3) Does not 
allow trend shifts 
at change point 
time 
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In addition to the individual test statistics, Reeves et al. (2007) discussed 

hierarchical methods for the detection of change points within a time series.  Within these 

methods, the appropriate model from Table 2-2 is selected and then the location of the 

change point is determined.  The Modified Vincent Method is a hierarchical method that 

tests the residuals from Models 1 through 5 based on the Durbin-Watson test.  If the 

residuals are determined to be adequate, a change point location is then estimated based 

on the c that minimizes the SSE.  Two additional methods to select the appropriate model 

within a hierarchal method are the Akaike’s Information Criteria (AIC) and the Sawa’s 

Baye’s criteria (SBC).  The idea behind these methods is to penalize the addition of 

excessive model parameters. 

Reeves et al. (2007) found the AIC and SBC approaches both have the potential 

for high Type-I errors depending on the model selected.  For model 3 in Table 2-2, SNH 

and NPW were found to be the most powerful test statistics when the assumptions were 

met.  However, both tests failed to accurately detect change points located at the 

beginning or end of a series.  The performance of the XLW, LR, and GNL methods 

varied depending on the model of the data based on Table 2-2. 

Reeves et al. (2007) recommend future research in the development of change 

point tests.  They suggest the development of more powerful nonparametric procedures to 

eliminate the requirement for independence and normality of the residuals.  Additionally, 

they emphasize the need for a test to detect multiple change points within a time series.   

While common practice is to locate one change point and then analyze the remainder of 

the time series for an additional change point, Reeves et al. (2007) state that this will lead 
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to inaccurate detection of change points because the results for the detection of the first 

change point will be heavily biased by the existence of additional change points.   

2.4 Frequency Analysis Methods 
2.4.1 Introduction 
 
 Flood frequency analyses are used as a method of estimating the probability of a 

particular flood magnitude occurring in order to plan accordingly.  The statistical 

distribution most commonly used in flood frequency analyses in the United States is the 

Log-Pearson Type III distribution.  It is recommended by the U.S. Water Resources 

Council in Bulletin 17B (Interagency 1982).  The analysis procedure is as follows: (1) 

create a time series of the logarithms of the annual maximum flood series value, Yi; (2) 

Calculate the mean, Y , the standard deviation, Sy, and the standardized skew, g, of the 

logarithms; (3) select values of exceedance probability for the analysis and obtain the 

corresponding standardized variate, K, values that are provided in table form; and (4) for 

the exceedance probabilities selected, calculate the LP3 curve values as follows: Y=Y

+K*Sy.  Then plot the values and the exceedance probabilities to develop the flood 

frequency curve.  The computed discharges can be determined by taking the antilog of 

the values on the curve (McCuen 2005). 

Many variations of the flood frequency method proposed by Bulletin 17B have 

been proposed.  Stedinger and Griffis (2008) discussed the need for updates in Bulletin 

17B’s method that include the following: (1) improved methods to estimate a regional 

skew; (2) methods to incorporate historic data; (3) a consistent treatment of outliers; (4) 

methods to assess statistical uncertainties in estimates; (5) incorporation of generated 

flood records based on precipitation records and watershed models into flood frequency 
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analyses; (6) incorporation of simulations of reservoir system performance and regulated 

flows; and (7) development of distributions for very extreme floods.  In addition to the 

improvements suggested by Stedinger and Griffis (2008), alternative distributions have 

also been considered.  Additionally, methods for a flood frequency analysis for 

nonstationary conditions are being developed, as the Bulletin 17B method for assumes 

stationarity of the data.  A sampling of studies that suggest deviations from the Bulletin 

17B approach to flood frequency analyses will be discussed herein. 

2.4.2 Frequency Distributions 
 
 The generalized extreme value distribution (GEV) is a popular choice for 

representing extreme hydrologic data.  Data can converge to one of three GEV 

distributions: Type I, Type II, or Type III.  The cumulative distribution function for the 

GEV distribution is as follows: 

  for   0 Eq. 2-1 

with  = location parameter,  = scale parameter, and  = shape parameter.  A positive 

shape parameter results in a Type III distribution with a finite upper bound and thinner 

tail.  A negative shape parameter results in a Type II distribution and a thicker tail 

(Stedinger et al. 1993).  In the estimation of maximum values in hydrology, the Type III 

distribution is not practical, as it is bounded from above (Koutsoyiannis 2004).  The 

Gumbel or Type I distribution is attained when the shape parameter equals zero and has 

the following distribution: 

  for   0 Eq. 2-2 
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The distribution resembles the Gumbel distribution when the magnitude of the shape 

parameter is less than 0.3 (Stedinger et al. 1993).   

Wilks (1993) compared the performance of the following probability distributions 

in representing annual extreme and partial duration precipitation data: (1) Beta-P; (2) 

Beta-k; (3) Revfeim distribution; (4) Generalized gamma distribution; (5) Generalized 

Pareto distribution; (6) Generalized Extreme Value distribution; (7) Transnormal 

distribution; (8) Three-parameter lognormal distribution; and (9) Gumbel distribution.  

The Maximum Likelihood method was used to fit the parameters.  The parameters were 

estimated using the Levenberg-Marquardt method, a generalization of the Newton-

Raphson algorithm.  The degree of fit was determined in the right tail using quantile-

quantile plots.  The boot-strap method was also used.  The results showed that the Beta-P 

distribution was almost unbiased for the quantile extrapolations and had a small variance 

for partial duration data.  The 3-parameter lognormal performed well for partial duration, 

but the right tail was inferior to the Beta-P.  The Beta-K was best for annual extremes but 

inferior to the Beta-P for partial duration data.  

De Michele et al. (2008) evaluated the critical design storm (CDS) considering 

the possibility of non-stationarity in Italy.  Two data lengths assessed were: (1) past 30 

years starting at different times and (2) past 90 years.  The CDS was computed by fitting 

the annual maxima of the daily rainfall with each of the following extreme value 

distributions: (1) General Extreme Value Distribution (GEV); (2) Gumbel Distribution 

(EV1); (3) Frechet Distribution (EV2); and (4) Log-Normal Distribution (LN2).  

Parameter estimation was conducted using L-Moments.  The Anderson-Darling and 

Kolmogorov-Smirnoff goodness-of-fit tests were used to assess the ability of model to fit 
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observed data.  The results showed that the GEV, Gumbel, and LN2 were all a 

satisfactory fit and met a 95% confidence level while the Frechet did not.  An increasing 

tendency of the CDS was less noticeable when the entire data set was used, while shorter 

time spans showed an increase in CDS starting around 1940.  To account for the presence 

of nonstationarity, they suggested increasing the estimated value of the CDS for design. 

While additional distributions have proved to be a good representation of 

hydrologic data, Stedinger and Griffis (2008) support the use of the LP3 distribution for 

flood frequency analyses.  They argue that the differences in quantile estimators that 

results from other extreme value distributions is less than the uncertainties associated 

with the actual estimations.  They suggest that the use of a reasonable distribution, such 

as the LP3 distribution, is sufficient and emphasis should be placed on improvements in 

fitting the distribution based on expansions in the knowledge of flood processes and 

regional patterns. 

2.4.3 Regional Analyses 
 

Koutsoyiannis (2004) analyzed 169 rainfall records throughout Europe and North 

America to determine regional characteristics of the GEV distribution.  Koutsoyiannis 

(2004) discussed the difficulty in estimating the shape parameter with sample sizes as 

great as 100 years or more due to sampling variation and estimation bias.  The results 

showed that the Type II GEV distribution is the best representation of hydrologic 

extremes and a constant shape parameter value of 0.15 represents the rainfall 

distributions in both Europe and North America.  Note that the notation used by 

Koutsoyiannis differs from that explained by Stedinger et al. (1993) and a positive shape 

parameter represents a Type II distribution.   
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Javelle et al. (2001) used Flood-Duration-Frequency (QdF) Analysis to develop a 

statistical model that provides a more complete description of a basin’s flood regime.  

The model is similar to the Intensity-Duration-Frequency method (IDF) but uses a 

minimal amount of parameters.  The study analyzed 158 stream gauges from basins in 

Quebec and Ontario, Canada.  The QdF model proved to be robust and independent of 

geography or climate.  The Index-Flood (IF) method was then generalized to develop a 

regionalized QdF model used for fixed non-contiguous homogeneous regions.  Javelle et 

al. (2001) determined that neighborhood approaches are more efficient.  The results 

showed that regression is a main source of error for both methods in estimating flood 

indices.  The authors suggested testing the model for more sophisticated methods for 

delineating homogeneous regions or determining significant physiographic characters. 

Groupe de recherché en hydrologie statistique (GREYHS) (1996) reviewed 

different techniques for forming homogeneous regions as well as different methods of 

regional flood estimation in order to estimate floods at sites with little or no data 

available.  Techniques used to determine homogeneous regions included: (1) region of 

influence; (2) canonical correlation analysis; (3) correspondence analysis and ascending 

hierarchical clustering; and (4) L-moments.  Flood frequency analysis methods included: 

(1) GEV/PWM index flood procedure; (2) regional non-parametric analysis; (3) regional 

flood estimation by peaks-over-threshold methods based on direct multiple regression, 

the GP/POT index flood procedure, and the EXP/POT index flood procedure; (4) 

regional L-moment analysis; and (5) the regional estimation of floods by regression 

methods.  Approaches in comparing these methods must be developed. 
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Castellarin et al. (2000) used Monte Carlo simulation to assess the performance of 

four hydrological similarity measures when used to form homogeneous pooling groups 

for a regional flood frequency analysis.  The effectiveness of a pooled frequency analysis 

depends on the homogeneity of the group and the target size.  The following measures for 

forming homogeneous pooling groups were used: (1) seasonality of hydrological extreme 

events, (2) measures of frequency of rainfall extremes and permeability, (3) daily rainfall 

L-statistics, and (4) daily rainfall and permeability.  The pooling group consisting of the 

whole area of study was used as a reference condition.  The results showed that all of the 

pooling groups based on similarity measures performed better than the whole area of 

study.   The seasonality of hydrological extreme events pooling measurement performed 

the best.  The first and second similarity measures overestimated while the third and 

fourth measures underestimated the true flow quantiles.   

2.4.4 Nonstationarity 
 

Khaliq et al. (2006) conducted a review of frequency analysis methods and their 

assumptions of independence and stationarity.  They addressed the issue of climate 

change affecting these assumptions and reviewed existing approaches to this issue.  

Methods for removing serial dependence in order to satisfy the assumption of 

independence were reviewed including the decorrelation approach, the Lettenmaier 

technique, and the probability density estimation by wavelets and kernels.  Approaches 

reviewed addressing non-stationarity include the r-largest model, the peaks-over-

threshold (POT) method, covariates and time-varying moments, quantile regression 

method, local likelihood, and pooled flood frequency analysis.  Future recommendations 

were also discussed. 
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Cunderlik and Ouarda (2006) defined components in a nonstationary flood-

duration-frequency model.  Time dependent model parameters were identified on a 

regional basis.  The model assumes temporally and spatially constant nonstationarity.  

The model can be used to estimate future flood quantiles.  The model was applied to a 

hydrologically homogeneous region in Quebec, Canada.  The results showed that 

significant bias in flood quantiles will exist if nonstationarity is ignored. 

Villarini et al. (2009) developed a flood frequency analysis framework based on 

the Generalized Additive Models for Location, Scale, and Shape Parameters (GAMLSS).  

GAMLSS is a tool for modeling time series under nonstationary conditions and can 

describes the variability of the moments of the annual maximum peak discharge by 

modeling the parameters of the distribution as a function of time through cubic splines.  

The method was applied to annual maximum peak discharge records for Little Sugar 

Creek in Charlotte, North Carolina.  The results showed that range of the 100-yr flood 

discharge value throughout an 83 record as well as the vast increase in the return period 

of the flood determined to be the 100-yr flood in 1957.  Villarini et al. (2009) suggest that 

alternative definitions of return period be developed for non-stationarity scenarios. 

El Adlouni et al. (2007) developed an estimation method for the use of the GEV 

distribution for quantile estimation in the presence of nonstationarity.  They assumed 

parameters are time-dependent or dependent on other covariates.  Parameter estimation 

was done with generalized maximum likelihood estimation method instead of the 

maximum likelihood estimation method (common method); covariates were incorporated 

into parameters with GML.  They note that it is important to take into consideration 

additional information such as historical and regional information to define prior 
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distribution.  The Monte Carlo Markov Chains method was used for estimator 

calculations in the case of the GML method.  They conducted a simulation study to 

compare the performances of GML (integrates the prior information on the shape 

parameter) and ML methods using: stationary GEV model; nonstationary case with a 

linear dependence to the location parameter on covariates; nonstationary case with 

quadratic dependence on covariates; and nonstationary case with linear dependence in 

both location and scale parameters.  The covariates used included time and the Southern 

Oscillation Index (SOI).  The results showed that the GLM performed better than ML for 

the studied cases with respect to bias and the root mean squared error.  They 

recommended the following research for the future: develop a distribution that depends 

on more than one covariate; focus on other statistical distributions and different 

nonstationarity structures such as trends in the variance of the series (scale parameter); 

and development of a new framework for risk assessment in the case of nonstationarity. 

 Villarini et al. (2009) analyzed nonstationarity in the annual peak discharge 

records from 50 stations in the United States.  Trends in flood peaks and abrupt changes 

in the mean or variance were explored over time using the Mann-Kendall, Spearman, 

Pearson, and Generalized Additive Models for location, scale, and shape (GAMLSS).  

GAMLSS accounts for abrupt changes and trends in the parameters of a distribution 

function.  Four scenarios were explored using GAMLSS: (1) a stationary model; (2) the 

mean varied linearly as a function of time; (3) the variance varied linearly as a function of 

time; (4) both the variance and the mean varied as a function of time.  The results showed 

that it was difficult to prove nonstationarity despite the significant landuse changes that 

occurred over time. 
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 Leclerc and Ouarda (2007) explored a method of conducting a regional flood 

frequency analysis (FFA) that accounts for non-stationarity in ungauged sites.  Canonical 

correlation analysis (CCA) was conducted to define a hydrologic neighborhood of the 

ungauged site based on meteorological and drainage basin characteristics.  The GEV 

distribution was used to calculate the 5- and 100-yr flood quantiles for the hydrologic 

neighborhoods based on three different models: (1) stationary moments; (2) nonstationary 

with first moment varying linearly as a function of time; (3) nonstationary with first 

moment varying quadratically as a function of time.  The time variant flood quantiles 

were then regressed on the following variables: (1) basin drainage area; (2) gauging 

station latitude and longitude; (3) mean total winter/spring precipitation; and (4) mean 

winter/spring maximum air temperature.  These equations were verified with gauged 

watersheds but can then be applied to ungauged watersheds based on the hydrologic 

neighborhood.  The analysis was conducted on river flow gauging stations located in 

southeastern Canada and northeastern United States.  The results showed that multiple 

regression based on 2 to 4 predictor variables provided efficient estimates with RMSE of 

38.2 and 60.8% for the 5-yr and 100-yr, respectively, while the use of canonical 

correlation analysis to define the hydrologic neighborhood did not improve these 

estimates.  This is most likely due to the small number of sites available for the 

hydrologic neighborhood. 

Raff et al. (2009) developed a method to estimate future flood frequencies using 

the CMIP3 monthly precipitation data combined with a rainfall-runoff model.  The 

rainfall-runoff model required precipitation in 6-hour time increments; therefore, Raff et 

al. (2009) retrieved daily precipitation data from the CMIP3 data.  Then, they randomly 
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sampled rainfall depths from a 6-hour time period in the observed data record which were 

scaled by the ratio of the projected monthly rainfall depth to the observed monthly 

rainfall depth.  A scale constant was applied to ensure that the aggregate precipitation 

equaled that of the projected time period.  The method of sampling 6-hour data records 

was divided into four categories: hot-wet, hot-dry, cold-wet, and cold-dry based on the 

median temperature and precipitation in the observed months.  This was to ensure that 

scaling was done in a physically rational manner based on the characteristics of the 

month analyzed.  Raff et al. (2009) then calculated flood frequency curves based on the 

observed and projected runoff depths and the Log Pearson 3 distribution.  Nonstationarity 

was accounted for based on the concept of ‘Look ahead’ time periods.  Frequency 

analyses were applied to various time periods considered to have stationary climate 

conditions.  The following time periods were analyzed: (1) current conditions; (2) 2011- 

2040; (3) 2041-2070; and (4) 2071-2099. 

Kwon et al. (2011) used a weather state-based, stochastic multivariate model 

based on seasonal precipitation rates projected through a regional climate model to 

simulate and project daily precipitation under climate change conditions for the A2 

emissions scenario.  The simulated precipitation was input into the Sacramento Soil 

Moisture Accounting precipitation –runoff model and the Bayesian Markov Chain Monte 

Carlo scheme was applied to provide an estimate of uncertainties associated with the 

resulting peak discharge projections.  The approach was applied to the Soyang Dam in 

South Korea.  Kwon et al. (2011) compared the design floods that were projected for 

2045 based on the projected data from 2030-2060 and the design flood for 1985 based on 

observed data from (1970-2000).  The results suggested that flood events with return 
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periods greater than 50-yrs experienced a 10% increase in magnitude.  However, 

uncertainties increased with the return period. 

Kwon et al. (2008) used a Hierarchical Bayesian Analysis to analyze multiple 

factors that affect extreme flood events in Montana, which include sea surface 

temperature (SST), predicted GCM precipitation data, climate indices, and snowpack 

depth.  The climate information was implemented to update estimates of parameter 

values for the Gumbel distribution, which was used represent annual maximum flood 

data.  The Markov Chain Monte Carlo algorithm was used to then estimate the flood risk 

prediction parameters.  The Bayesian extreme value distribution model was then used to 

estimate the 100-yr flood from 1930 to 2005.  The results showed a statistically 

significant link between the peak discharge and the SST indices, snowpack depth, and 

GCM seasonal precipitation data, which suggests that climate indicators can be used to 

predict flood risk. 

Villarini et al. (2010) used the Generalized Additive Models in Location, Scale 

and Shape (GAMLSS) to assess nonstationarity in seasonal rainfall and temperature from 

in Rome.  Covariate analyses were then conducted based on the Atlantic Multidecadal 

Oscillation, North Atlantic Oscillation, and Mediterranean Index.  Five two parameter 

extreme value distributions were analyzed, which included the Gamma, Gumbel, logistic, 

lognormal, Weibull distributions. The results showed that the Mediterranean Index was a 

statistically significant predict-tor regardless of the season and the North Atlantic 

Oscillation was a statistically significant predictor for the winter season. 

Renard et al. (2006) used a Bayesian framework to account for nonstationarity in 

extreme events.  Three probabilistic models were demonstrated: (1) stationary, (2) step 
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change, and (3) linear trend.  Four extreme value distributions were discussed: (1) 

exponential, (2) generalized Pareto, (3) Gumbel, and (4) GEV.  Regional prior knowledge 

was used to develop prior distributions and posterior distributions were developed.  

Frequency analyses were developed for peak-over-threshold extreme events, which take 

into account uncertainty in both the prior and posterior distributions. 

Sivapalan and Samual (2009) provided a nonstationary approach to risk 

assessment for flood structures.  The risk of failure over a design life was defined based 

on the following equation: 

   Eq. 2-1 

where n = expected life of a design project, m corresponds to the sequential year over the 

design life, jm=climate state of the year m, Pm
jm(Q>=qp) = probability that the annual 

maximum flood, Q, is greater than or equal to qp in the year under the climate state.  This 

equation was applied to three catchments in Australia based on climate states from pre-

1970 climate and post-1970 climate.  Possible future evolution of the climate states was 

randomly generated based on a Markov Chain Model and then a rainfall-runoff model 

was applied.  The results showed a reduction in risk of failure over a design life for Perth, 

Australia, due to a drier climate in the post-1970 scenario.  In each of the three analyses, 

the design flood decreases as the acceptable level of risk increases. 

2.5 Risk Assessment 
 

Risk is defined as a combination of the probability and consequences associated 

with an event.  Policies are often based upon the risk associated for a given return period, 
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particularly the 100-yr flood.  The analysis of risk and the importance of accurate flood 

frequency estimates will be discussed herein  

Moser et al. (2009) define the risk analysis process as the evaluation of risk 

followed by the consideration of the monetary and non-monetary costs and benefits 

involved in the implementation of risk mitigation methods.  Risk analysis consists of 

three components: (1) risk assessment; (2) risk management; and (3) risk communication.  

Risk assessment is considered to be the technical component of a risk analysis, in which 

the risk is quantified.  This includes identification and characterization of the hazard, 

assessment of the exposure, and estimation of the risk.  Risk management considers 

environmental, social, cultural, ethical, political and legal factors to analyzed potential 

options to mitigate the assessed risk.  Finally, risk communication is the ongoing 

communication between the two components to ensure that both parties are well 

informed.  Moser et al. discuss the implementation of risk analysis within the U.S. Army 

Corp of Engineers. 

The Interagency Performance Evaluation Task Force, established by the U.S. Ary 

Corps of Engineers (USACE), analyzed the New Orleans and Southern Louisiana 

Hurricane Protection System following Hurricane Katrina (USACE 2009).  The analysis 

consisted of a risk assessment for both pre- and post-Hurricane Katrina conditions based 

on flood mitigation methods and the distribution of the population and property.  Within 

the report, risk was calculated based on the product of the vulnerability of flooding and 

the consequences that would result.   

The vulnerability of flooding is comprised of the definition of the hazard and the 

probability of the occurrence as well as the system performance.  The hazard is defined as 
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the event or condition that can result in negative consequences.  For example, in the 

assessment of a hurricane, the hazard would include the surge and wave conditions 

caused by the hurricane.  The system performance, which can be considered a reliability 

analysis, refers to how structural components of the hazard mitigation system will 

withstand the hazard.  For example, system performance would include the level at which 

levees, floodwalls, or gates will withstand flooding that may result from a hurricane.  The 

vulnerability of flooding of an area combines both the likelihood of the occurrence of the 

hazard and the system performance during the event. 

The consequences are defined by the potential loss of life and property damage 

that results from the event.  Historical data was used to develop flood-depth versus 

damage relationships to assess property damage from the defined hazard.  Census data 

and evacuation plans were used as input to a simulation model to estimate the loss of life. 

Finally, the consequences for the defined hazard were multiplied by the probability of 

occurrence to estimate the risk. 

The United States Corps Army of Engineers (2006) provided guidance for flood 

damage reduction studies.  The report discusses the shift from sensitivity analyses to risk 

analyses in project development.  Risk analyses take into account both the risk and 

uncertainty in multiple aspects of an investment project.  Decisions can be made based on 

better knowledge of risks and costs within a project.  The report defines risk as the 

likelihood of a flood event with undesirable consequences occurring in an area.  

Uncertainty refers to the imprecision of knowledge about technical and economical 

parameters and functions involved in the project plan.  Uncertainty exists in planning and 

design variables due to errors in sampling, measurement, estimating, and forecasting as 
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well as the inability to accurately model physical processes with mathematical equations.  

Parameters within the project are described in terms of probability distributions to 

account for uncertainties.  The regulation describes requirements for risk analyses to be 

used for flood reduction studies.  The goal of the regulation is develop a method in which 

all key variables, parameters, and components within the study are represented as a 

probabilistic analysis.  Requirements include a feasibility report, general design 

memorandum, and general evaluation reports.  Focus should be on those variables that 

have a significant impact on the study outcome.  Minimum variables required include: (1) 

a stage-damage function for economic analysis; (2) discharge corresponding to 

exceedance probabilities for hydrologic studies; (3) conveyance roughness and cross-

section geometry for hydraulic studies; and (4) structural and geotechnical performance 

of existing structures.  The use of a full range of floods, not just the Standard Project 

Flood (SPF), is required to evaluate project alternatives.  Risk analysis must quantify the 

flood protection performance of all alternatives within the final recommendation at all 

scales and residual risk must also be considered.  The National Economic Development 

plan must be used for a cost-benefit analysis.  And local sponsors and residents must 

understand the tradeoffs between engineering performance, economic performance, and 

project costs.   

Purdy (2010) discusses International Organization of Standardization’s (ISO) 

progress in standardizing risk management, including vocabulary, performance criteria, a 

method of identifying, analyzing, evaluating, and treating risk, and guidance for 

integrating the method into decision making.  The group consisted of nominated experts 

from 28 countries and specialist organizations.  ISO defined risk as the effect of 
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uncertainty on objectives.  Uncertainty was defined as the result of internal and external 

factors that may interfere with or aid in achieving the objectives.  Risk treatment was 

considered the act of changing the probability and degree of both negative and positive 

consequences in order to increase the project benefits.  ISO defined performance criteria 

to ensure effective risk management.  First, risk management must create and protect 

value.  It must be a part of all organizational processes as well as decision making.  The 

method must address uncertainties as well as human and cultural factors.  The method 

must be systematic, structured, timely, and tailored as well as used the best available 

information.  It must also be transparent and inclusive as well as dynamic, iterative, and 

responsive to change.  Finally, the method must promote continuous improvement within 

the organization.  ISO also defined a process for risk management.  The method is based 

on multiple steps, all of which require iteration between both the steps and the processes 

of communication and consultation as well as monitoring and reviewing.  

Communication and consultation involve internal and external stakeholders.  Monitoring 

and reviewing are necessary as existing risks change and new risks occur.  The steps 

include first establishing the context of the project.  Second, completing a risk 

assessment, involving risk identification, analysis and evaluation.  Risk assessment is 

followed by risk treatment.  Finally, the process must be implemented into the 

organizational decision making process. 

Burby (2006) discusses the growing trend in flood losses over the past century.  

They argue that poor policy planning is to blame, both at the federal and local levels.  

They define two paradoxes: the safe development and the local government paradox.  

The safe development paradox is based on the attempt of federal policy to reduce losses 
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through structural mitigation and building codes as well as disaster relief; however, the 

result has been an increase in development in vulnerable areas.  The local government 

paradox states that the avoidance of disaster losses is not a priority for local officials.  

Burby (2006) argues that the most efficient approach to mitigate losses and, therefore, 

risk is the requirement of local governments to restrict development in vulnerable areas. 

Godschalk (2006) explains a nonstationary approach to risk assessment based on 

a method known as the ‘Buildout Analysis’.  A buildout analysis analyzes the effects of 

future landuse patterns on a watershed to aid in the evaluation of potential consequences 

and, therefore, potential alternative for future growth.  Many communities have 

conducted buildout analyses to encourage the wise use of floodplains to mitigate the 

vulnerability and, therefore, the risk associated with flooding.  Successful Buildout 

Analyses have been conducted in Mecklenberg County, North Carolina, and the state of 

Massachusetts.  

Blais et al. (2006) analyzed whether existing floodplain management techniques 

required by the NFIP address changing conditions in the watershed.  They analyzed the 

consequences (both losses and benefits) involved in the management of future conditions.  

Qualitative and quantitative assessments were conducted through interviews and a risk 

assessment, respectively.  Damages to current and future inventory for the existing and 

future 100-yr floodplain were analyzed.  The results showed an increase in damages from 

flooding that would results from future development within the watershed.  The costs 

associated with managing future floodplain conditions were determined negligible in 

comparison to the potential consequences.  Blais et al. (2006) recommend that 
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communities manage future conditions within the watershed in order to mitigate the risk 

of flooding. 

The Federal Emergency Management Agency (FEMA) developed the HAZUS 

software program to provide loss estimates for wind, flood, and earthquake events on a 

regional basis.  The flood model is expected to assist in flood risk mitigation, response, 

and recovery preparedness by providing local, state, and regional officials as well as 

consultants with regional risk estimates.  The methodology consists of two basic 

analyses: (1) Potential Earth Science Hazards and (2) Damage Analysis.  For the flood 

model, the potential earth science hazard analysis characterizes the riverine or coastal 

inundation and velocity based on the frequency and discharge of the event and ground 

elevation of the study region.  The expected loss estimate accounts for both structural and 

economic factors.  The loss estimates are based on vulnerability curves developed from 

the hazard analysis. 

The program consists of three levels of complexity which vary based on the input 

required by the user and the level of analysis conducted within the program.  The higher 

the level, the more sophisticated the loss estimate will be.  Level one requires minimal 

effort by the user and the loss estimates are based on default data within the HAZUS 

program.  The user is required to specify the study region and input the topographic data 

for the region.  Levels 2 and 3 require more extensive inventory data and hazard 

information from the user.   

The default data within the HAZUS program assesses damage to the general 

building stock within the United States as well as national data for essential facilities such 

as police stations, high potential loss facilities such as stormwater management 
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structures, transportation and lifeline systems, agriculture, vehicles, and demographics.  

This information is available on the census block level for the flood model.   

In addition to the assessment of the hazard, the HAZUS program also provides the 

ability to incorporate a flood warning into the scenario in order to mitigate losses.  The 

risk reduction based on a flood warning is estimated based on the U.S. Army Corps of 

Engineers approach which uses the “Day” curves.   

Uncertainties exist within the estimated economic and structural losses.  The use 

of national data as a representation of a regional analysis creates uncertainties.  The level 

of inputs provided by the user aids in the reduction of these uncertainties.  The program 

does not currently provide uncertainty estimates.  Therefore, results should be used with 

caution. 
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3 Development of Method to Detect Multinonstationarity 
3.1 Introduction 

Many statistical tests have been developed to detect different types of change 

within a data series.  Popular statistical tests to determine whether or not the data are 

correlated or that a gradual trend exists include the Kendall Tau test, the ANOVA test, 

and the Spearman-Conley test.   The Two-sample t-test and the Mann-Whitney, however, 

test for an abrupt change in the mean rather than a gradual trend.  In addition to the 

variation within the null hypothesis, different tests require different assumptions to be 

applied to a data set.  For example, the Kendall Tau test, ANOVA test, and the two-

sample t-test are each parametric tests, which means that certain distribution assumptions 

are required to ensure the full power of the test.  The Spearman-Conley test and Mann-

Whitney test are each non-parametric tests, which means they do not require distribution 

assumptions for the data.  While the Kendall Tau test is a parametric test, it also can be 

categorized as a rank-based test along with the Spearman-Conley and Mann-Whitney 

tests.   

While high power in detecting secular trends is important, it is also important that 

statistical tests are sensitive to partial trends.  Nonstationary factors, such as climate 

change and urbanization, have and will continue to influence hydrologic data.  As a 

result, many climate change and urbanization time series contain partial duration trends.  

For example, temperature data might be available for the past century; however, many 

records only show noticeable increases in temperature starting in the 1970’s.  Likewise, 

urbanization often occurs over a short period of time and then slows down.  Therefore, 

results of statistical tests can be misinterpreted if the entire time series is analyzed rather 

than the period of time during which climate change and urbanization occur. 
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Partial duration trends can be detected through statistical tests on change points 

within the data, where change points are defined as discontinuities in a time series as the 

result of outside factors such as environmental changes (Reeves et al. 2007).  However, 

few tests currently exist to identify change points in data series.  Reeves et al. (2007) 

explained and compared existing change point tests including the standard normal 

homogeneity (SNH) test, the nonparametric SNH test, two-phase regression of Wang 

(2003), TPR of Lund and Reeves (2002), method of Vincent (1998), Akaike’s 

information criteria, Sawa’s Bayes criteria, as well as a method developed within the 

study.  However, Reeves et al. (2007) emphasized that these tests assume that at most, 

one change point exists within a data series examined.  Wang and Feng (2004) proposed 

a semi-hierarchical splitting algorithm for the detection of multiple change points; 

however, an actual test does not currently exist to detect multiple change points within a 

time series.  Additionally, time series differ from a random variable because the predictor 

variable has a uniform rather than a normal distribution.  Therefore, most existing tests do 

not apply to time series.  Therefore, the goal of Objective 1 was to develop a test to 

identify both the location and significance of multiple change points in a time series.  The 

theory development and results will be discussed herein. 

3.2 Development of Change Point Test 

In a nonstationary environment, outside factors, such as changes in watershed 

characteristics, will influence the statistical characteristics of a time series.  In some 

cases, an outside factor may influence the data during a portion of the time series and 

then stop.  For example, urbanization may occur only over a period of two decades within 

a 60-year time period.  This would result in the occurrence of two change points within 
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the time series: (1) the time at which urbanization begins and (2) the time at which 

urbanization ends.  In the event of multinonstationarity, multiple factors will have 

influenced the data over all or parts of the series, which will also result in multiple 

change points within the time series.  These change points could occur simultaneously or 

at independent times within the time series.  Therefore, regardless of the number of 

nonstationary factors that influence the time series, multiple change points may exist 

within a time series.   

The addition of a nonstationary factor would result in a change in the slope of the 

data.  This change could consist of an increase, decrease, or stabilization of the data.  

With this in mind, the first approach attempted in this study for the development of a 

change point test was to adjust the Kendall Tau test.  The Kendall Tau test is a powerful 

statistical test to detect a monotonically increasing or decreasing trend in the data.  The 

Kendall Tau test was adjusted in two ways in an attempt to develop a test to detect 

change points in a time series.  First, the Kendall Tau test was systematically applied to 

sub-samples within the data and the test statistic equaled the sum of the resulting Z-

statistics.  Second, the Kendall Tau test was systematically applied to sub-samples within 

the data and the test statistic equaled the greatest difference between the resulting Z-

statistics.  The results showed that the Kendall Tau test was not sensitive to partial 

duration trends and, therefore, change points within the data.  Appendix A explains the 

methodology and results for this approach. 

 The second approach was developed based on the following relationship between 

the slope and correlation coefficient: 

b = r*       Eq. 3-1 
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in which ‘b’ = the slope coefficient, ‘r’ = the correlation coefficient, Sx= the standard 

deviation of the predictor variable (time), and Sy= the standard deviation of the criterion 

variable.  This relationship can be solved for the correlation coefficient as follows:   

r = b*       Eq. 3-2. 

Therefore, the correlation coefficient is directly related to the slope and variation within 

the data and is representative of a change in the time series.   

 The Fisher’s ‘Z’ transformation converts the sample correlation coefficient to a 

normally distributed Z-value based on the following equation: 

     Eq. 3-3. 

Therefore, if a sample affected by multinonstationarity was divided into multiple sub-

samples, and the Z-values were calculated for the data within each sub-sample, the 

variation between the Z-values would be the greatest when the sub-samples are divided at 

the location in which the changes in the data occurred.  This theory was used in the 

development of the following test statistic based on the variance of the calculated Z-

values: 

T =     Eq. 3-4 

where m = the number of sub-samples; n = the sample size for each sub-sample i; and Z 

= the Z-value calculated in Eq. (3) for each sub-sample.  The test statistic would be 

applied systematically to sub-samples within a time series and the sub-samples that 

provide the largest calculated T-statistic would reflect the change point locations within 

the time series.  Based on this test statistic, the null hypothesis states that a change point 

does not exist within the time series.  Likewise, the alternative hypothesis states that a 
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change point does exist within the time series.  The null hypothesis can be tested for 

multiple change points using the test statistic. 

3.3 Development of critical values 
 
 The first step to assess the developed test statistic was to determine the critical 

values.  Under the assumption of normally distributed random variables, the T-statistic 

follows a chi-square distribution; however, time series differ from a general data set in 

that the predictor variable is not a random variable because it is uniformly rather than 

normally distributed.  The predictor variable is a sequence of integer values.  Therefore, 

the chi-square distribution could not be used to determine critical values for the change 

point T- statistic.  Instead, critical values were determined through simulation. 

Data were simulated for 5,000 samples of varying sizes based on the null 

hypothesis that a change point does not exist.  The T-statistic was systematically applied 

to varying sub-samples within the time series.  Then, the maximum calculated T-statistic 

was stored for each simulation.  The 5,000 stored T-statistics were then ranked, and the 

test statistics in the 90th, 95th, 99th, and 99.5th percentiles were stored as the critical values 

for the 10%, 5%, 1%, and 0.5% level of significance, respectively.  The T-statistics 

within these percentiles represent a Type I error, in which the null hypothesis is rejected 

when a change point does not exist. 

 This method was repeated for time series based on different correlation 

coefficients (i.e., different trends).  Since the distribution of the correlation coefficient 

changes with the value of the coefficient, the critical values showed slight variation based 

on the correlation coefficients analyzed.  Therefore, a power model was fit to the critical 
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values as a function of the individual correlation coefficients calculated for each sub-

sample within the test.  The following functional form was fit to the critical values:  

CV = A*paramB     Eq. 3-5 

in which CV = critical value, A and B and defined in Table 3-1 for the 10%, 5%, 1%, and 

0.5% levels of significance, and param is defined by the following equation: 

param =      Eq. 3-6 

where ‘i' designates the sub-sample, m = number of sub-samples, n = sub-sample size, 

and r = correlation coefficient for sub-sample. 

 

Table 3-1. Coefficients for Critical Value Power Model. 

Alpha 0.50% 1% 2.50% 5% 10% 
A 11.9522 10.662 8.794 7.514 5.974 
B 0.16835 0.1809 0.1832 0.1989 0.207 
      

 
3.4 Verification of Critical Values 
 
 The critical values were verified through simulation.  Multiple analyses were 

conducted in which 1,000 samples were simulated with a sample size of 120 divided into 

three even sub-samples, a mean of 1,000, and a standard deviation of 50.  Each analysis 

consisted of three parts, one null hypothesis scenario and two alternative hypothesis 

scenarios.  Then, a different correlation coefficient was applied to each sub-sample.  For 

example, the first analysis tested a correlation coefficient of 0.9.  For the null hypothesis 

scenario, data within each sub-sample was simulated based on the following equation: 

   Eq. 3-7 
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where z is a randomly generated number based on the normal distribution with a mean of 

zero and standard deviation of one and ri equals 0.9 for each sub-sample.  The alternative 

hypothesis scenario consisted of data simulated based on the same equation for each sub-

sample, but r1 = 0.9, r2 = 0, and r3= 0.9.  The different r-values for each sub-sample will 

result in two statistically significant change points within the data, as a difference in R2 

greater than 5% is considered statistically significant.  The second alternative hypothesis 

scenario consisted of r1 = 0, r2 = 0.9, andr3= 0.9.  This would provide one statistically 

significant change point within the simulated time series.  This analysis was conducted 

for r = 0.9, r = 0.7, r = 0.5, and r= 0.3.  The resulting test statistic and critical values were 

calculated and are shown in Table 3-2.   

The results show that for the null hypothesis scenarios, the null hypothesis is 

accepted, as expected, regardless of the correlation coefficient analyzed.  The alternative 

hypothesis scenarios result in the rejection of the null hypothesis for all levels of 

significance for the scenarios with r = 0.7 and 0.9.  The null hypothesis is rejected for the 

10% level of significance for r = 0.5.  The null hypothesis is accepted for r = 0.3, which is 

understandable considering this corresponds to an R2 value of only 0.09.  These results 

imply that the critical values result in the appropriate test conclusions for samples that 

contain change points. 

 

Table 3-2. Verification of Critical Values for Sample-Size N= 120; Sub-Sample 
Sizes: n1=40, n2 �=1000. 

Level of Significance 
R1 R2 R3 T 0.5 1 2.5 5 10 
0.9 0.9 0.9 1.122 11.742 10.461 8.626 7.358 5.845 
0.9 0 0.9 46.861 10.967 9.721 8.008 6.788 5.375 
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Level of Significance 
R1 R2 R3 T 0.5 1 2.5 5 10 
0 0.9 0.9 46.855 10.967 9.721 8.008 6.788 5.375 

0.7 0.7 0.7 1.500 11.256 9.996 8.238 6.999 5.549 
0.7 0 0.7 15.495 10.513 9.289 7.648 6.457 5.102 
0 0.7 0.7 15.080 10.513 9.289 7.648 6.457 5.102 

0.5 0.5 0.5 1.822 10.636 9.406 7.745 6.5463 5.176 
0.5 0 0.5 5.893 9.934 8.740 7.191 6.039 4.759 
0 0.5 0.5 5.783 9.934 8.740 7.191 6.039 4.759 

0.3 0.3 0.3 1.775 9.759 8.575 7.053 5.914 4.656 
0.3 0 0.3 2.284 9.115 7.969 6.548 5.456 4.281 
0 0.3 0.3 2.284 9.115 7.969 6.548 5.456 4.281 

 

The analyses were repeated for a standard deviation of 250 to determine the 

sensitivity of test statistic to variation within the data. The results are shown Table 3-3.  

The results suggest that the critical values perform just as effectively, regardless of the 

increase in variation within the data.   

 

Table 3-3. - -
�=1000. 

Level of Significance 
R1 R2 R3 T 0.5 1 2.5 5 10 
0.9 0.9 0.9 1.1725 11.7421 10.4607 8.6259 7.3582 5.8451 
0.9 0 0.9 47.0124 10.9673 9.7209 8.0084 6.7881 5.3746 
0 0.9 0.9 46.6437 10.9673 9.7209 8.0084 6.7881 5.3746 

0.7 0.7 0.7 1.4585 11.2556 9.9958 8.2377 6.9994 5.5488 
0.7 0 0.7 13.9499 10.5130 9.2889 7.648 6.4571 5.1021 
0 0.7 0.7 15.1872 10.5130 9.2889 7.648 6.4571 5.1021 

0.5 0.5 0.5 1.7316 10.6358 9.4055 7.7453 6.5463 5.1755 
0.5 0 0.5 6.0423 9.9340 8.7403 7.1908 6.0391 4.7588 
0 0.5 0.5 6.0215 9.9340 8.7403 7.1908 6.0391 4.7588 

0.3 0.3 0.3 1.7083 9.7594 8.5753 7.0533 5.9139 4.6562 
0.3 0 0.3 2.2697 9.1154 7.9688 6.5484 5.4556 4.2813 
0 0.3 0.3 2.3323 9.1154 7.9688 6.5484 5.4556 4.2813 
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For the final analysis, the sensitivity of the critical values to uneven sub-samples 

was tested.  The data were simulated based on the same method previously described; 

however, the sample was divided into sub-samples of 30, 60, and 30 data values.  The 

results are shown in Table 3-4.  The results suggest that the test performs equally as well 

for uneven sub-samples as with even sample sizes.   

Table 3-4. Verification of Critical Values for Sample-Size N= 120; -
�=1000. 

  Level of Significance 
R1 R2 R3 T 0.5 1 2.5 5 10 
0.9 0.9 0.9 1.2301 11.7421 10.4607 8.6259 7.3582 5.8451 
0.9 0 0.9 54.9257 10.4488 9.2279 7.5972 6.4105 5.0638 
0 0.9 0.9 37.651 11.1869 9.9302 8.183 6.949 5.5072 

0.7 0.7 0.7 1.4733 11.2556 9.9958 8.2377 6.9994 5.5488 
0.7 0 0.7 18.1145 10.0159 8.8178 7.2554 6.098 4.8071 
0 0.7 0.7 12.1805 10.7235 9.4889 7.8148 6.6101 5.228 

0.5 0.5 0.5 1.8096 10.6358 9.4055 7.7453 6.5463 5.1755 
0.5 0 0.5 6.889 9.4644 8.2971 6.8216 5.7032 4.4837 
0 0.5 0.5 4.7856 10.133 8.9285 7.3477 6.1822 4.8763 

0.3 0.3 0.3 1.7426 9.7594 8.5753 7.0533 5.9139 4.6562 
0.3 0 0.3 2.8011 8.6845 7.5647 6.2122 5.1522 4.0338 
0 0.3 0.3 1.8865 9.298 8.1405 6.6912 5.585 4.387 

 
3.5 Verification of Test Statistic 
 
 The test statistic was then verified using simulated data.  Samples were simulated 

with the following characteristics: (1) slope = 1; (2) mean = 1,000; and standard error = 

0.1.   The data consisted of two change points. The first sub-sample contained zero slope, 

the second sub-sample contained the designated slope, and the third sub-sample a zero 

slope in the third sub-sample.   

Multiple analyses were conducted in which two change points were simulated 

within the data.  Each analysis consisted of a different combination of total sample size 
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and change point locations.  Then, the sample was divided systematically into sub-

samples and the test statistic was calculated for each test statistic.  The maximum test 

statistic was then determined, and the associated change point locations as well as the 

critical values were stored.  Table 3-5 shows the results for each analysis conducted.  The 

results suggest that the test statistic detects the change point location within plus or minus 

one of the actual simulated change point location.  Likewise, the calculated T-statistics 

suggest very significant change points in the data. 

 

Table 3-5. Detected Change Point Locations and T-Statistics for Slope = 1 and Se = 
0.1. 

  
Simulated Change Point 

Location 
Detected Change Point 

Location     

n 1 2 1 2 
CV alpha 

= 1% 
T-

Statistic 

200 

40 80 39 81 9.7937 881.3416 
40 120 39 121 10.339 1688.1 
60 100 59 101 9.935 864.81 
60 140 59 140 10.622 1649.9 

150 

30 60 29 61 9.748 608.88 
30 90 29 91 10.444 1140.2 
45 75 44 76 10.178 590.73 
45 105 45 106 10.415 1128.7 

100 

20 40 20 41 9.5541 321.5 
20 60 20 60 10.822 601.32 
30 50 29 51 9.5176 347.97 
30 70 29 71 10.471 653.84 

 
 Figure 3-1 shows the response surface as the test statistic is systematically applied 

for different sub-samples and, therefore, change points.  The response surface is for a 

sample size of 200 and change points located at 60 and 140.  The response surface 

suggests that as the change point location tested nears the actual change point location, 
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the test statistic value increases, which would be expected.  Likewise, as the change point 

locations tested deviates from the actual change point locations, the calculated test 

statistic decreases. This suggests that the theory behind the test statistic performs as 

expected. 

Figure 3-1. Response Surface of Test Statistic for a Sample Size Equal to 200, and 
Change Points Located at 60 and 140. 

Two additional analyses were conducted in which the slopes within the second 

sub-sample were decreased from to 0.5 and then 0.1.  The purpose was to test the 

sensitivity of the test statistic the ratio of the standard error to the standard deviation.  

Decreasing the slope will increase the standard error ratio.  The results are shown in 

Tables 3-6 and 3-7 for the slopes of 0.5 and 0.1, respectively.   
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Table 3-6. Detected Change Point Locations and T-Statistics for Slope = 0.5 and Se 
= 0.1. 

  
Simulated Change Point 

Location 
Detected Change Point 

Location     

n 1 2 1 2 
CV alpha 

= 1% T 

200 

40 80 39 81 9.3379 668.55 
40 120 39 119 10.38 1349.7 
60 100 59 101 9.4811 724.81 
60 140 61 141 10.263 1333.8 

150 

30 60 29 61 9.6327 544.99 
30 90 29 89 10.557 865.31 
45 75 44 76 9.7238 453.63 
45 105 45 106 10.362 887.93 

100 

20 40 20 41 9.8183 206.78 
20 60 20 61 10.439 487.58 
30 50 29 51 9.5798 239.87 
30 70 29 71 10.689 520.97 

 
 

Table 3-7. Detected Change Point Locations and T-Statistics for Slope = 0.1 and Se 
= 0.1. 

  
Simulated Change Point 

Location 
Detected Change Point 

Location     

n 1 2 1 2 
CV alpha 

= 1% T 

200 

40 80 38 83 9.9143 367.72 
40 120 38 123 10.755 623.03 
60 100 59 101 9.7304 372.53 
60 140 57 137 10.392 723.33 

150 

30 60 26 65 9.7365 194.38 
30 90 28 93 10.56 473.15 
45 75 42 76 9.533 216.07 
45 105 43 106 10.589 441.97 

100 
20 40 20 43 9.4272 135.71 
20 60 20 58 10.26 192.45 
30 50 25 55 10.228 108.88 
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Simulated Change Point 

Location 
Detected Change Point 

Location     

n 1 2 1 2 
CV alpha 

= 1% T 
30 70 26 68 10.446 207.28 

 

 It is apparent from Tables 3-6 and 3-7 that the test is sensitive to the random 

variation within the data.  While the change points detected are very close to the actual 

change points, it appears that the test statistic consistently underestimates the first change 

point and overestimates the second change point.  The response surface is shown in 

Figure 3-2 for the analysis consisting of a sample size of 200 and change points located at 

60 and 140 and slope equal to 0.1.  Compared to Figure 3-1, it is apparent that the 

response surface in Figure 3-2 is flatter near the actual change point locations.  This 

suggests that as the difference in the slopes and, therefore, the correlation coefficients of 

the sub-samples decrease, the difference between the test statistic values calculated for 

each potential change point location decreases as well.  This is expected, as it is more 

difficult to reject the null hypothesis for any trend detection test as random variation 

increase or the magnitude of the trend decreases.    
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Figure 3-2. Response Surface of Test Statistic for a Sample Size Equal to 200, Slope 
Equal to 0.1, and Change Points Located at 60 and 140. 

It is clear from the response surfaces that the test statistics for potential change 

point locations within the vicinity of the simulated change point locations provide nearly 

equal and statistically significant test statistic values.  The critical values for the 

individual test statistics were analyzed for each combination of potential change point 

locations to determine whether a relationship exists between the test statistic and the 

critical value.  In the event that the critical value calculated for the different sub-sample 

increases as the test statistic increases, the test statistic at the actual change point location 

may be more statistically significant even if another location provides a larger test 

statistic value. 

The analysis region was limited to the change point locations that encompassed 

both the simulated and calculated breakpoints of the sample.  The calculated test statistic 
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and critical values for the region of analysis are shown in Tables 3-8 and 3-9, 

respectively.  The maximum test statistic and the test statistic for the actual change point 

locations are highlighted.  Likewise, the critical values associated with the two change 

point locations are highlighted in Table 3-8.  While the change point locations of 57 and 

145 provide the greater test statistic, it is apparent from Table 3-8 that the critical value is 

also larger but not significantly.  This is because the critical values are sensitive to the 

correlation coefficients of the individual sub-samples.  This suggests that the maximum 

test statistic may not be the best indicator of the change point locations, but rather the 

rejection probability associated with the test statistic at each change point location may 

be a better indication of the actual change points. 

Table 3-8. Test Statistic Values for Analysis Region for Sample Size Equal to 200, 
Slope equal to 0.1, and Change Points Located at 60 and 140. 

Change Point 2 
Change Point 

1 140 141 142 143 144 145 
57 702.79 702.29 712.55 730.45 720.71 730.96 
58 679.67 683.65 683.27 693.55 711.37 701.96 
59 699.87 688.77 693.23 692.83 703.31 721.39 
60 679.54 689.14 678.54 683.2 683.14 693.77 
61 657.96 677.7 687.52 677.57 682.67 683.02 
62 632.64 656.7 676.53 686.54 677.11 682.64 

 

Table 3-9. Critical Values at the 5% Level of Significance for Analysis Region for 
Sample Size Equal to 200, Slope equal to 0.1, and Change Points Located at 60 and 

140. 

Change Point 2 
Change Point 

1 140 141 142 143 144 145 
57 6.4952 6.5338 6.5368 6.5099 6.518 6.4886 
58 6.4988 6.5327 6.5704 6.5733 6.5471 6.555 
59 6.3672 6.457 6.4918 6.5305 6.5335 6.5066 



www.manaraa.com

Change Point 2 
Change Point 

1 140 141 142 143 144 145 
60 6.3519 6.3618 6.4519 6.4867 6.5256 6.5286 
61 6.3417 6.2966 6.3069 6.4001 6.436 6.4761 
62 6.3591 6.2885 6.2418 6.2525 6.3488 6.386 

 
3.6 Conclusions 
 
 The results of this study suggest that theory behind the test statistic developed 

accurately detects multiple change points within a time series.  However, limitations do 

exist with the application of this test statistic.  The current method selects the maximum 

test statistic calculated based on a systematic application of the test statistic to potential 

change points within a time series.  A more accurate approach would be to calculate the 

rejection probabilities associated with the test statistics calculated at each potential 

change point location.  Based on these results, it is recommended that future research be 

conducted in which the distribution of the critical values is determined.  This would 

enable the rejection probability to be calculated for every test statistic, rather than only 

the 10%, 5%, 2.5%, and 1% levels of significance. 

 The development of a statistical test to detect multiple change points within a time 

series improves the state of the art in change point detection.  Currently, a change point 

test that can detect more than one change point within a time series is not available 

(Reeves et al. 2007).  The detection of multiple change points will become increasingly 

important as multinonstationarity continues to influence hydrologic data.  Knowledge of 

change point locations will aid in the optimal modeling of hydrologic data as well as 

other time series that are influenced by multiple factors. 
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4 Development of Climate Change and Urbanization Adjustment 
Factor 

4.1 Introduction 
Climate change scenarios are based on the assumption of significant temporal 

increases in greenhouse gas emissions during the twenty-first century leading to changes 

in temperature and preciptation.  As a greater percentage of the population settles in 

urban areas, urbanization scenarios indicate significant temporal increases in 

imperviousness during the twenty-first century.  Each of these factors will influence the 

hydrologic cycle and, therefore, flood risk.  The goal of Objective 3 is to develop a 

method to adjust annual maximum flood data to climate change and urbanization 

conditions at a design year.  The adjusted time series can then be used to conduct a flood 

frequency analysis.  The return periods of floods under future climate change and 

urbanization conditions can then be estimated.  The development of each component will 

be discussed in detail herein. 

4.2 Development of Multinonstationarity Model 
 To develop a multinonstationarity model, the individual effects of each variable, 

climate change and urbanization, on flooding were considered.   The first step was to 

determine whether the method should adjust peak discharge values simultaneously or 

individually for urbanization and climate change.  For an individual approach, physical 

reasoning would be necessary to support the sequential order in which adjustments are 

made.  Therefore, a review of the influence of each component on the hydrologic cycle 

was conducted. 

 In Chapter 2, the effects of climate change were discussed based on the IPCC 

findings as well as individual studies.  The studies show a global increase in temperature 
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in response to increases in greenhouse gas emissions.  An increase in the water-holding 

capacity of the Earth’s atmosphere accompanies and an increase in evaporation 

accompany an increase in temperature (Trenberth 1999).  The increase in atmospheric 

moisture content is expected to enhance precipitation and snowfall rates (Karl et al. 1995).  

More intense rainfall events will result in more runoff and greater floods.  It can be 

assumed that evaporation will not play a role during the occurrence of precipitation 

events and, therefore, increased evaporation rates will only mitigate flooding through the 

reduction of antecedent moisture conditions during rainless time periods.  Therefore, the 

main effect of climate change on flood risk is the change in precipitation patterns with 

increased greenhouse gas concentrations. 

Many studies have shown the effects of urbanization on flooding.  Changes in 

land cover involved in urbanization tend to decrease infiltration capabilities of the 

watershed and therefore, alter runoff characteristics.  This leads to increases in runoff.  

While theories regarding the “heat island effect” of urbanization exist, the potential 

effects of urbanization on climate change and, therefore, precipitation were ignored for 

this study.  Therefore, the urbanization effect considered in this study is the increase in 

runoff that results from a lower infiltration amounts, faster runoff times, and reduced 

surface storage such as depression and interception storages. 

Based on the individual effects of climate change and urbanization on the 

hydrologic cycle, it was determined that the adjustment method should include individual 

components to consider each factor separately.  The main effect of climate change on 

flood risk results from the change in precipitation patterns, while the main effect of 

urbanization results from the change in runoff caused by a precipitation event.  Therefore, 
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the structure of the adjustment model was developed to account first for climate change 

and second for urbanization in order to follow the sequence of the physical processes 

influenced by each factor.   

Figure 4-1 provides a diagram of the adjustment model structure.  The model 

includes three components: (1) a climate change adjustment method for an observed 24-

hour precipitation event based on a climate change scenario; (2) the conversion of the 

design and observed year rainfall event to a peak runoff event; and (3) an urbanization 

adjustment method for the resulting design and observed year peak runoff events based 

on the design and observed year urbanization conditions, respectively.  Note that in each 

component, an estimated value for both the observed year and design year are calculated.  

The final adjustment factor developed through the model is a ratio of the estimated design 

and observed year peak discharge for the respective climate and urbanization conditions.  

This ratio is then multiplied by the observed peak discharge value from the original time 

series.  The development of each of the three components within this model will be 

discussed herein. 
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Figure 4-1. Diagram of Climate Change and Urbanization Adjustment Method 
Structure. 

 
The climate change adjustment method required a physically rational approach to 

transform an observed 24-hour rainfall event to future climate change conditions.  The 

goal was to estimate the expected change in heavy rainfall intensity over time for a 

specified climate change scenario and then apply the estimated change to the observed 

precipitation record.  As stated in Chapter 2, many uncertainties still exist within GCM 

climate response predictions.  Despite these uncertainties, GCMs currently provide the 

best physical estimate of future climate changes based on realistic future emissions 

scenarios.  Therefore, the climate change adjustment method was developed using the 

precipitation data compiled based on IPCC emission scenarios through the World 

Climate Research Programme’s (WRCP’s) Coupled Model Intercomparison Projection 

phase 3. 
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4.3.1 Retrieval of GCM Data 
The World Climate Research Programme's (WCRP's) Coupled Model 

Intercomparison Project phase 3 (CMIP3) multi-model dataset consists of climate model 

output from past, present, and future climate simulations from multiple GCMs.  Output 

variables are available for 3-hourly, daily, and monthly time periods depending on the 

model and variable.  The data are provided for rectilinear latitude-longitude grids, with 

the resolution varying for each model (Meehl et al. 2007).   

The CMIP3 multi-model dataset provides climate simulations based on different 

emissions scenarios.  Each participating modeling group was required to provide a 

twentieth century simulation (20C3M) as well as additional scenarios for varying 

emissions projections.  For this study, simulated precipitation data were analyzed for the 

SRES A2, A1B, and B1 scenarios, which represent low, medium, and high emission 

rates, respectively (Meehl et al 2007).  The 20C3M experiment was conducted from the 

year 1850 to 2000 and used observed greenhouse gas emissions.  SRES A2, A1B, and B2 

were conducted from the year 2000 to at minimum, the year 2100.  Each of these 

experiments used the end of the 20C3M run as the initial conditions and used the 

greenhouse gas emissions projected for the specified climate change scenario (Mehl et al. 

2007) (See Chapter 2 for further explanation of emissions scenarios). 

Daily precipitation data were retrieved for this study from the CMIP3 multi-

model dataset.  Precipitation flux was provided with the units kg/m2/s and included both 

liquid and solid phases.  The density of water equals 1 gram per cubic centimeter.  

Therefore, 1 kilogram of water equals 1000 cm3.  This volume distributed over 1 m2 

equals 1 mm.  Therefore, precipitation flux was converted to a daily depth (mm/day) by 
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multiplying the variable by 86,400 seconds/day (http://www.narccap.ucar.edu/data/data-

tables.html). 

 The precipitation data were retrieved from the CSIRO Mark 3.5 GCM because 

this model provided daily precipitation values for every decade in the twentieth and 

twenty-first century, rather than just the four decades specified in the CMIP3 

requirements.  The grid resolution of the CSIRO Mark 3.5 model was 192 x 96 and the 

vertical resolution was 18.  

 To retrieve precipitation data from the CSIRO model, the latitude and longitude 

coordinates for an area of interest were required.  The GCM outputs represent the 

precipitation within the latitudinal and longitudinal bounds that define each grid cell.  The 

study area selected included the states of Maryland, Virginia, and Delaware to ensure the 

developed method would be applicable to multiple watersheds and still account for 

regional precipitation patterns.  The region excluded mountain ranges in the western part 

of Virginia as the physical processes would likely be different from those of the 

remainder of the region.  This exclusion does not limit the anlayses.  The grid coordinates 

from which precipitation data were retrieved for the three emissions scenarios are listed 

in Table 4-1 and the grids as well as the defined study region are shown in Figure 4-2.   

Table 4-1. Latitude and Longitude Bounds for Grids 1 through 12 from the CSIRO 
Mark 3.5 GCM. 

Grid 1 2 3 4 5 6 7 8 9 10 11 12 
Lat. 
 (N) 

35.4 37.3 41.0 35.4 37.3 41.0 35.4 37.3 41.0 35.4 37.3 41.0 
37.3 39.1 39.1 37.3 39.1 39.1 37.3 39.1 39.1 37.3 39.1 39.1 

Long.  
(W) 

81.5 81.5 81.5 79.6 79.6 79.6 77.8 77.8 77.8 75.9 75.9 75.9 
79.6 79.6 79.6 77.8 77.8 77.8 75.9 75.9 75.9 74.0 74.0 74.0 
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Figure 4-2. CSIRO Model Grids within Study Region for Precipitation Data 

4.3.2 Development of Annual Maximum 24-hr Precipitation Time Series 
Daily precipitation flux data were downloaded from the CSIRO model for each of 

the 12 grids and the three specified emissions scenarios from 2001 to 2100, as well as the 

20C3M scenario from 1901-2000.  The precipitation data were converted to depths 

(in./day).  Next, the annual maximum 24-hr precipitation event was identified and stored 

for each data set.  The 20C3M scenario, representative of the twentieth century, was then 

combined with each of the three emissions scenarios to provide three time series from 

1901 to 2100 based on twentieth century emissions and the twenty-first century 

scenarios: A2, A1B, and B1.  The annual maximum 24-hr precipitation time series for the 

12 CSIRO cells are shown in Figures 4-3, 4-4, and 4-5 for the A2, A1B, and B1 

emissions scenarios, respectively. 
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Figure 4-3. Annual Maximum 24-hr Precipitation Time Series for the SRES A2. 
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Figure 4-4. Annual Maximum 24-hr Precipitation Time Series for the SRES A1B. 

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 1

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 2

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 3

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 4

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 5

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 6

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 7

1900 2000 2100
0

2

4

6

Time
P

 (
in

.)

Grid 8

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 9

1900 2000 2100
0

2

4

6

Time
P

 (
in

.)

Grid 10

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 11

1900 2000 2100
0

2

4

6

Time

P
 (

in
.)

Grid 12



www.manaraa.com

Figure 4-5. Annual Maximum 24-hr Precipitation Time Series for the SRES B1. 

4.3.3 Selection of Annual Maximum Precipitation Distribution 
With the annual maximum preciptiation time series available for each of the three 

emissions scenarios, the next step was to select the appropriate distribution upon which to 

analyze the changes in precipitation characteristics.  Based on previous precipitation 

studies (Kharin and Zwiers 2005; Koutsoyiannis 2004; Martins and Stedinger 2000), the 

general extreme value (GEV) distribution was selected (see Chapter 2 for a descripition 

of the GEV distribution).   
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The GEV distribution uses three parameters, the location, scale, and shape 

parameters.  As described in Chapter 2, the shape parameter denotes whether the data 

represent a Type I, II, or III distribution, with the Type II distribution being the most 

common for hydrologic data.  While some studies represent the Type II distribution with 

a negative shape parameter and the Type III with a positive shape parameter, the opposite 

notation has been selected for this study.  Therefore, a positive shape parameter will 

represent the Type II distribution.  This notation was also adopted by Kharin and Zwiers 

(2005) and Koutsoyiannis (2004) and is also the notation applied in Matlab, the software 

program used in this research to conduct the GEV analysis.  

The Kolmogorv-Smirnov One-Sample (KS-1) test was applied to each of the 36 

annual maximum precipitation time series to ensure that the GEV distribution was 

representative of the data.  To develop the null hypothesis for each of the analyses, the 

GEV parameters needed to be calculated; however, each data set consists of non-

stationary precipitation data, as they represent changes in climate from the twentieth to 

the twenty-first century.  Therefore, GEV parameters calculated from the entire data set 

would be inaccurate because the parameter values change throughout the 200 years.  

Therefore, a method developed by Kharin and Zwiers (2005) was applied in which the 

GEV parameters were calculated within 51-yr windows throughout each 200-yr time 

series.  The parameter value that was calculated within any 51-yr time period was 

assigned to the middle year within the 51-yr window.  The method of maximum 

likelihood was used to calculate the parameter values.  Kharin and Zwiers (2005) and 

Semenov and Bengtsson (2002) discuss the advantages of using the method of maximum 

likelihood rather than the method of moments.  The result was 36 time series (three 
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emissions scenarios for each of the 12 grids) comprised of 149 parameter values for each 

of the three GEV parameters. 

To conduct the KS-1 test, the median parameter values from the 51-yr window 

analysis were selected to represent the population distribution, with the assumption that 

these values would provide the least deviation from the parameters during any given time 

period within the precipitation time series.  Therefore, the null hypothesis for each 

analysis stated that the precipitation data record represents a population that follows the 

GEV distribution with the parameters defined as the median shape, scale, and location 

parameter for each of the 36 time series.  The median GEV parameter values for the 12 

grids are shown in Tables4-2, 4-3, and 4-4 for the A2, A1B, and B1 emissions scenarios, 

as well as the resulting test statistic from the KS-1 Test.    

For a sample size equal to 200, the critical value for the KS-1 test is 0.115 for the 

1% level of significance.  Therefore, the null hypothesis is accepted for each of the 12 

CSIRO grids and each of the emissions scenarios at the 1% level of significance.  This 

implies that the GEV distribution is a good representation of the annual maximum 

precipitation for each emissions scenario. 

Table 4-2. Median GEV Parameter Values from the 51-yr Window Analysis and 
KS-1 Test Statistic for the A2 Scenario. 

Grid 1 2 3 4 5 6 7 8 9 10 11 12 
KS-1 Test 0.044 0.045 0.061 0.059 0.051 0.082 0.075 0.047 0.111 0.044 0.077 0.057 
Location 1.79 1.67 1.51 1.94 1.85 1.58 1.92 1.82 1.60 1.78 1.85 1.86 

Scale 0.43 0.33 0.31 0.35 0.36 0.31 0.36 0.38 0.32 0.42 0.36 0.38 
Shape -0.03 0.00 -0.07 -0.15 -0.08 -0.09 -0.02 0.01 -0.05 -0.06 -0.13 -0.06 
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Table 4-3. Median GEV Parameter Values from the 51-yr Window Analysis and  
KS-1 Test Statistic for the A1B Scenario. 

Grid 1 2 3 4 5 6 7 8 9 10 11 12 
KS-1 Test 0.089 0.088 0.060 0.080 0.060 0.070 0.093 0.066 0.064 0.041 0.042 0.061 
Location 1.86 1.75 1.54 1.90 1.80 1.61 1.91 1.82 1.64 1.77 1.80 1.84 

Scale 0.40 0.36 0.30 0.36 0.36 0.32 0.34 0.40 0.34 0.41 0.38 0.38 
Shape -0.02 -0.07 -0.07 -0.13 -0.11 -0.02 0.01 -0.04 -0.10 -0.04 -0.16 -0.12 

 

Table 4-4. Median GEV Parameter Values from the 51-yr Window Analysis and 
KS-1 Test Statistic for the B1 Scenario. 

Grid 1 2 3 4 5 6 7 8 9 10 11 12 
KS-1 Test 0.050 0.055 0.048 0.042 0.067 0.047 0.024 0.045 0.092 0.058 0.044 0.034 
Location 1.77 1.65 1.49 1.90 1.75 1.52 1.92 1.82 1.57 1.82 1.72 1.82 

Scale 0.40 0.35 0.30 0.36 0.37 0.30 0.35 0.40 0.32 0.42 0.36 0.37 
Shape -0.01 -0.04 -0.10 -0.10 -0.09 -0.06 0.03 0.08 -0.07 -0.09 -0.01 -0.05 

 

4.3.4 Analysis of Change in GEV Parameters 
 The next step was to analyze the change in the GEV parameters as function of 

time and the emissions scenario.  The time series of the location, scale, and shape 

parameters for each of the 12 grids and 3 emissions scenarios were analyzed.  Then, the 

temporal change in each parameter was modeled.  Model selection and fitting criteria for 

each parameter and emissions scenario will be explained herein, followed by discussions 

of the calibrated models. 

4.3.4.1 Model Selection  
 
 The selection of the appropriate functional form is necessary to ensure that 

extrapolation from the beginning of the twentieth century and to the end of the twenty-

first century provides rational estimates.  Model selection for each GEV parameter time 

series was based on an initial graphical analysis as well as physical rationality.  First, 

each GEV parameter time series was plotted versus time and the rate of change was 
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analyzed throughout the time series.  An appropriate model was then selected based on 

these observations.  For example, an exponential function was selected for a parameter 

time series in which the rate of change increased with time or a logistic function was 

selected for a parameter time series in which the rate of change increased and then 

decreased with time.   

The initial model selection was then analyzed for physical rationality.  The 

expected changes in the precipitation distribution parameters are unknown; however, 

assumptions can be made based on existing studies and trends in the emissions scenarios 

themselves.  Studies suggest that heavy precipitation events will increase in magnitude 

while moderate events decrease in frequency in the Eastern United States.  Every event in 

an annual maximum precipitation time series can be considered a heavy precipitation 

event.  Therefore, increases in the magnitude of heavy precipitation events should be 

reflected in changes in the location, scale, or shape parameters.  An increase in the 

location parameter would shift the precipitation distribution upwards and increase the 

storm magnitude for every return period.  An increase in the scale parameter affects the 

spread of the distribution, which enhances precipitation extremes.  Changes in the shape 

parameter influence the tail of the distribution, which also influences extreme events.  

Kharin and Zwier (2005) analyzed the global GEV parameters for precipitation and 

conclude that the location and scale parameters increased and the shape parameter 

experienced an insignificant decrease.  The magnitude of these changes varied regionally.  

Based on these analyses, it can be assumed that the location and scale parameter will 

most likely increase with climate change and the model selected should account for this 

increase. 
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Emissions scenarios were also analyzed to provide additional information in 

regards to the expected changes in the GEV parameters for each emissions scenario.  The 

emissions scenarios analyzed in this study (A2, A1B, and B1) change nonlinearly 

throughout the twenty-first century (see Chapter 2 for more details).  Therefore, the 

precipitation distribution parameters most likely will not follow a linear model.  

Likewise, emission rates for the A2 and A1B scenarios are expected to increase 

throughout the twenty-first century while rates for the B1 scenario are expected to 

stabilize in the twenty-first century.  Therefore, it is likely that the precipitation 

distribution parameters will follow similar trends.  While emission rates most likely do 

not directly affect the precipitation distribution parameters, the rate of increase of 

emissions for each scenario should be considered in the selection of a model structure for 

parameter and scenario. 

4.3.4.2 Model Coefficient Fitting Criteria 
 
 Once the model structure was selected, the coefficients were initially fit based on 

numerical optimization.  Then, the coefficients were subjectively adjusted where 

necessary to ensure that they provided rational models for the twentieth and twenty-first 

century for each emissions scenario.  For example, calculation of parameter values within 

set window lengths results in a loss of data values at the beginning and end of the sample.  

Therefore, the developed models needed to be extrapolated both backwards and forwards 

and the extrapolated models were assessed for rationality.  Unfortunately, little 

information is available to provide constraints for extrapolation to the year 2100; 

however, verification was conducted at the end of the entire analysis to determine 

whether precipitation projections that result from the final models coincided with other 
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studies.  For the twentieth century, the models would most likely be more stable than the 

twenty-first century because the emissions rates were more stable than rates projected for 

the twenty-first century.  Therefore, the models were adjusted to ensure that extrapolating 

to the beginning of the twentieth century did not result in an irrational decrease in the 

parameter value.   

 In addition to the assessment of model rationality in extrapolation, it was 

necessary that the models for the three emissions scenarios provide the same GEV 

parameters for the twentieth century.  The emission rates in the twentieth century are 

based on observed as opposed to projected values for the twenty-first century, and 

changes in the emissions scenarios do not exist until the year 2000.  Therefore, the 

emissions rates for the preceding years should provide the same GEV parameters and, 

therefore, the same precipitation distribution.   

 Two issues arise that make it difficult to provide the same parameter values for 

the twentieth century for each of the three emission scenarios.  First, the parameter values 

designated to a year after 1976 will be influenced by precipitation events after the year 

2000, based on the 51-yr window within which GEV parameters are calculated.  The 

emissions scenarios, however, begin to diverge starting in the year 2000.  Therefore, 

despite the emissions scenarios being the same from 1900 to 2000, the GEV parameters 

will differ slightly at the end of the twentieth century for the three emission scenarios as 

they are influenced by events from the different scenarios.  Second, if the model structure 

selected for a GEV parameter for the A2 scenario differs from that of the B1 scenario, it 

will be difficult to provide an exact fit for the three emissions scenarios in the twentieth 

century without a composite model, which can result in irrational model fits.  Therefore, 
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final adjustments were made to the statistical model coefficients for each GEV parameter 

and emissions scenario to ensure that the differences between scenarios in the twentieth 

century parameter values were minimal. 

 Physical rationality was also ensured by comparing the parameter values to GEV 

parameters based on observed precipitation data within the MD-DE-VA region.  Annual 

maximum precipitation data were retrieved from 32 rain gauges, and the GEV parameters 

for each precipitation record were calculated.  The parameter values were then compared 

to ensure that magnitude of both the simulated GCM precipitation data and the observed 

regional precipitation data were similar.  Necessary adjustments were made when the 

magnitudes differed significantly. 

4.3.4.3 Location Parameter 
 

For the annual maximum precipitation, the time series based on a 51-yr window 

length for the location parameter provided parameter values from 1926 to 2074.  Values 

are lost at each end of the series as is characteristic of moving average filtering.  Values 

of the median, mean, 25th percentile, and 75th percentile of the parameter values 

calculated for each of the 12 grids were computed.  The results are shown in Figures 4-6, 

4-7, and 4-8 for the A2, A1B, and B1 emissions scenario, respectively.   
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Figure 4-6. Median, Mean, 25th Percentile, and 75th Percentile of Location 
Parameters for the 12 CSIRO Grid Cells from 1926 to 2074 for the A2 Scenario. 

Figure 4-7. Median, Mean, 25th Percentile, and 75th Percentile of Location 
Parameters for the 12 CSIRO Grid Cells from 1926 to 2074 for the AB1 Scenario. 
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Figure 4-8. Median, Mean, 25th Percentile, and 75th Percentile of Location 
Parameters for the 12 CSIRO Grid Cells from 1926 to 2074 for the B1 Scenario. 

Model Selection.  A graphical analysis was conducted for each of the three 

scenarios to select the appropriate model structure.  The rate of change of both the A2 

and A1B location parameters appears to increase with time, which suggests that both 

parameter time series follow an exponential function.  This function form was compared 

to the globally averaged GEV parameters as a function of time developed by Kharin and 

Zwiers (2005) for the A2 scenario and shown in Figure 4-9.  Kharin and Zwiers (2005) 

also found an exponential trend in the global location parameter.  Based on the GEV 

parameter graphs and verification by the globally averaged parameters, the following 

exponential model was fit to the location parameters for the A2 and A1B emissions 

scenarios: 

    Eq. 4-1. 

with the coefficient values fit based on numerical optimization and adjusted for physical 

rationality. 
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Figure 4-9. Rate of Change of the Shape ( ), Scale ( ), and Location ( ) GEV 
Parameters as a Function of Time for the Global Land Precipitation Distribution 

for the A2 emissions scenario provided by Kharin and Zwiers (2005). 

For scenario B1, however, the location parameter time series suggests that the rate 

of increase in the parameter values begins to decrease towards the end of the twenty-first 

century (see Figure 4-8).  This coincides with the emissions rate reduction towards the 

end of the twenty-first century for the B1 emissions scenario (see Chapter 2).  Therefore, 

the exponential model used for the A2 and A1B scenarios is not applicable.  However, 

the twentieth century portion of the model needs to be consistent for the three scenarios 

because the twentieth century emissions rates are based on measured data regardless of 

the twenty-first century emissions rates.  

Based on these observations, a composite model was selected for the location 

parameter for the B1 scenario.  A slowly increasing exponential function was selected for 

the twentieth century followed by an exponential decay function for the twenty-first 

function.  The composite model form is as follows:  

 for t<= tc  Eq. 4-2 
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  for t>tc   Eq. 4-3 

with the coefficient values calibrated through numerical optimization and then adjusted 

for physical rationality.   

Calibration of the Parameter Models.  For each of the three emissions scenarios, 

the time series of the mean location parameter values for the 12 grids were fitted for the 

selected models.  The model coefficients were first determined based on numerical 

optimization to ensure a least squares fit.  Then, as previously discussed, the coefficient 

values were adjusted slightly to ensure that the twentieth century values were 

extrapolated at a rational rate.  Final adjustments were also made to minimize the 

difference between the functions during the twentieth century to ensure that similar 

precipitation distributions would result regardless of the emissions scenario being 

analyzed.  The coefficient values defined for the location parameter as well as the 

goodness-of-fit statistics are shown in Table 4-5 for scenarios A2, A1B, and B1.  Figures 

4-10, 4-11, and 4-12 show the fitted functions for the A2, A1B, and B1 scenarios, 

respectively.   

Table 4-5. Fitted Coefficient Values for Location Parameter Models. 

Emissions 
scenario 

Coefficient 
values 

Goodness-of-fit 

A2 

C1 1.55 Se 0.013 

C2 0.1115 Se/Sy 0.165 

C3 0.0085 e -0.001 

C4 1928.186 e/y 0 

A1B 

C1 1.525 Se 0.017 

C2 0.1315 Se/Sy 0.171 

C3 1926.008 e 0.006 

C4 -1.388 e/y 0.003 
B1 C1 1.55 Se 0.026 
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Emissions 
scenario 

Coefficient 
values 

Goodness-of-fit 

C2 0.1115 Se/Sy 0.417 

C3 0.00852 e 0.016 

C4 2.186 e/y 0.009 

C5 1.227 

  

C6 1.2 

C7 1.7 

C8 0.005 

C9 13.4 

 

Figure 4-10. Location Parameter Model for the CSIRO Precipitation Data for SRES 
A2. 
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Figure 4-11. Location Parameter Model for the CSIRO Precipitation Data for SRES 
A1B. 

 

Figure 4-12. Location Parameter Model for the CSIRO Precipitation Data for SRES 
B1. 
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Goodness-of-fit.  The relative biases for the adjusted models equaled 0, 0.003, and 

0.009 for the A2, A1B, and B1 scenarios, respectively.  Generally, the relative biases of 

less than 3% to 5% are not meaningful and certainly not statistically significant.  The 

slight bias is the result of local biases within the data that are visible in Figures 4-10, 4-

11, and 4-12.   This is most likely the result of calculating parameter values from small 

sample sizes.  The smaller the sample, the greater influence individual events will have 

on the calculated parmeter value.  This may create high and low points within the time 

series and, therefore, the local biases in the model.  Even with the adjustments for 

physical rationality, the models provide low bias with a few local biases within the time 

series for each scenario.   

The ratio between the standard error and standard deviation for the A2, A1B, and 

B1 scenarios equal 0.165, 0.171, and 0.417, respectively.  This implies that the models 

provide significantly better predications of the location parameter than the mean for each 

scenario.  While the models for scenarios A2 and A1B provide ratios with relatively the 

same magnitude, B1 provides a ratio that is almost three times greater.  Based on Figure 

4-12, it appears that the total variation within the location parameter time series for the 

B1 scenario is less than that of the A2 and A1B scenario.  Likewise, the B1 model 

experiences a greater local bias in the middle of the time series than the other scenarios.  

Both of these factors most likely contribute to the greater ratio between the standard error 

and standard deviation.   

The goodness-of-fit statistics suggest that the location parameter models 

developed for each emissions scenarios provide a good estimate of the calculated location 

parameters.  The models follow nonlinear trends, with A1B and A2 increasing throughout 
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the entire time series and B1 stabilizing in the 21 century.  Both of these model 

characteristics were hypothesized based on previous studies and the rate of change of 

each emissions scenario. 

4.3.4.4 Scale Parameter 
As with the location parameter for each emissions scenario, the time series 

developed using the sliding windows method for the scale parameter consisted of values 

from the year 1926 to 2074.  The time series of the median, mean, 25th percentile, and 

75th percentile of the scale parameter for the 12 grids are shown in Figures 4-13, 4-14, 

and 4-15 for the A2, A1B, and B1 emisions scenarios, respectively.  While the location 

parameter showed a smooth and slightly increasing exponential trend (see Figures 4-6, 4-

7 and 4-8), the scale parameter (see Figures 4-13, 4-14, and 4-15) shows obvious peaks 

and low points throughout the time series that may reflect the fact that the second 

moment is more variable than the first moment.  Therefore, before the model structure 

was selected, the scale parameter time series were analyzed to determine the cause of the 

local high and low points. 
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Figure 4-13. Median, Mean, 25th Percentile, and 75th Percentile of Scale 
Parameters for the 12 CSIRO Grid Cells for the A2 Scenario. 

 

 

Figure 4-14. Median, Mean, 25th Percentile, and 75th Percentile of Scale 
Parameters for the 12 CSIRO Grid Cells for the A1B Scenario. 
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Figure 4-15. Median, Mean, 25th Percentile, and 75th Percentile of Scale 
Parameters for the 12 CSIRO Grid Cells for the B1 Scenario. 

Analysis of the Scale Parameter.  Figure 4-16 shows an example of irrational 

increases and decreases that occur in Grids 1 and 2 for the A2 scenario.  In an attempt to 

determine the cause of each individual increase and decrease, the annual maximum 

precipitation data for Grids 1 and 2 were analyzed.  Table 4-6 provides the precipitation 

events for Grid 1 that are two standard deviations or greater than the mean precipitation 

in the A2 annual maximum precipitation time series.  These events are considered heavy 

precipitation events in this time series, and would most likely have the greatest influence 

on the scale parameter, which is a measure of the spread of the data.  Table 4-6 also 

shows the window of scale parameters that would be influenced by each heavy 

precipitation event, based on the 51-yr time span.  For example, a precipitation event that 

occurred in the year 2000 would influence the GEV parameters designated from the years 

1975 to 2025 because the event would be included in the 51-yr window that surrounds 

each of these years. 
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Figure 4-16. Scale Parameter for Grids 1 and 2 for SRES A2. 

In Grid 1, the scale parameter experiences a lowpoint at 1937 followed by a 

steady increase and peak from 2030 to 2041.  The time series experiences an abrupt 

decrease from 2068 to 2070 that is followed by an increase from 2071 to 2074.  Based on 

the occurrence of heavy precipitation events, the high point of the scale parameter series 

that occurs at the beginning of the time series is influenced by large events in 1903 and 

1909, with 1903 being one of the three greatest precipitation events shown in Table 4-6.  

The low point in the late 1930’s, however, is only influenced by the heavy precipitation 

event in 1958.  From 1960 to 2040, the scale parameter is influenced by a minimum of 

two heavy precipitation events for any given year, with the occurrence of two of the three 

greatest events in Table 4-6 in years 2026 and 2039.  From 2065 to 2070, the scale 

parameter is only influenced by events that occurred in the years 2078 and 2083, both of 

which are in the lowest four precipitation depths in Table 4-6.  Finally, the heavy 

precipitation event in the year 2095 influences the scale parameter at the year 2070, at 

which point the graph of the scale parameter experiences a final peak.  Based on these 
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observations, it is apparent that the scale parameter is sensitive to the peak events within 

the time series, which is expected for a parameter representative of the spread in the data.  

Table 4-6. Heavy Precipitation Events in Grid 2 for SRES A2. 

Year 1903 1909 1958 1985 1987 2010 2026 2039 2078 2083 2095 
Windo

w 
Effecte

d 

1900-
1928  

1900
-

1934  

1933
-

1983 

1960
-

2010  

1962
-

2012  

1985
-

2035 

2001
-

2051  

2014
-

2064  

2053
-

2100 

2058
-

2100 

2070-
2100  

P (in.) 3.60 3.16 3.34 3.28 3.38 3.39 3.86 3.59 3.22 3.29 3.19 
 

Another concern was the dramatic drop that occurs from 1975 to 1976in the scale 

parameter for Grid 2.  Analysis of the heavy precipitation events within the annual 

maximum time series for the Grid 1 and SRES A2, shown in Table 4-7, does not suggest 

a significant shift in heavy events that might influence the scale parameter during this 

time period.  However, the entire annual maximum precipitation time series, shown in 

Figure 4-17, shows that a potential low outlier occurred in the year 1950.  This low value 

would influence the scale parameters calculated from the year 1925 to 1975; however, the 

value of the 1950 event would not influence the 1976 scale value, which experienced a 

significant drop from the 1975 value.  The omissions of the 1950 value would greatly 

reduce the variation which is reflected in the smaller scale value. 

Table 4-7. Heavy Precipitation Events in Grid 1 for SRES A2. 

Year 1987 2017 2026 2039 2049 2051 2066 2073 2077 2083 2086 
Window 
Effected 

1962-
2012 

1992-
2042 

2001-
2051 

2014-
2064 

2024-
2074 

2026-
2076 

2041-
2091 

2048-
2098 

2052-
2100 

2058-
2100 

2061-
2100 

P (in.) 3.04 2.80 3.03 3.31 2.99 3.11 2.87 2.98 3.03 3.06 2.82 
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Figure 4-17. Annual Maximum Precipitation (in.) for Grid 2, SRES A2. 

The 1950 precipitation event was removed to determine whether or not a single 

event within a 51-yr window could have such a significant influence on the scale 

parameter.  The resulting scale parameter time series is shown in Figure 4-18.  If 

compared to the original Grid 2 scale parameter time series shown in Figure 4-16, it is 

apparent that the abrupt decrease in the scale parameter is eliminated with the removal of 

1950 low outlier.  Therefore, both low and high preciptation outliers have a significant 

influence on the scale parameter.  
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Figure 4-18. Scale Parameter Time Series for Grid 2, SRES A2 with Low Outlier in 
1950 Eliminated. 

Based on the effects of individual events on the scale parameter, the 51-yr 

window time period was increased to 71-yr windows to reduce the influence of individual 

precipitation events on the scale parameter without completely eliminating the trend that 

exists.  The comparison between the window lengths for the scale parameter is shown in 

Figure 4-19.  The 71-yr window smooths out the irrational peaks and low points within 

the time series; however, the overall trend remains, with a scale parameter value near 

0.35 in the twentieth century, an increasing trend throughout the twenty-first century, and 

a value of 0.4 around 2060.  Therefore, the 71-yr window length was selected to analyze 

the change in the scale parameter for each of the three emissions scenarios as shown in 

Figures 4-20, 4-21, and 4-22. 
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Figure 4-19. Comparison of the 51-yr and 71-yr Window Length in Calculating the 
Scale Parameter for SRES A2 based on the mean of the CSIRO 12 Grids. 

 

 

 

Figure 4-20. Median, Mean, 25th Percentile, and 75th Percentile of Scale 
Parameters for the 12 CSIRO Grid Cells from 1936 to 2064 for the A2 Scenario. 
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.  

 

Figure 4-21. Median, Mean, 25th Percentile, and 75th Percentile of Scale 
Parameters for the 12 CSIRO Grid Cells from 1936 to 2064 for the A1B Scenario. 

 

 

Figure 4-22. Median, Mean, 25th Percentile, and 75th Percentile of Scale. 

Model Selection and Calibration. The scale parameter time series calculated 

based on a 71-yr window were then analyzed to determine the best model to represent the 

parameter values as a function of time.  Similar to the location parameter, the scale 
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parameter for both the A2 and A1B scenarios appear to follow an exponential function as 

the rate of change increases with time.  The scale parameter appears to have greater 

curvature than the locaiton parameter for both scenarios.  Kharin and Zwiers (2005) 

found a similar functional form to represent the global scale parameter as shown in 

Figure 4-9 for the A2 scenario.  Therefore, the following function was fit to the scale 

parameter for both the A2 and A1B scenarios: 

    Eq. 4-4. 

The coefficients were calibrated using numerical optimzation and then adjusted for 

physical rationality. 

As with the location parameter, the scale parameter model for the B1 scenario 

differs from the A1B and A2 scenarios.  The rate of change of the scale parameter 

appears to increase with time in the first portion of the time series and then decrease with 

time during the end of the twenty-first century.  This again coincides with the reduction 

in the rate of change for emissions in the twenty-first century for the B1 scenario.  Based 

on this observation, an exponential decay function was fit based on the following model 

        Eq. 4-5. 

The model coefficient values were calibrated using numerical optimization and then 

adjusted for physical rationality.  The fitted coefficient values are shown in Table 4-8 and 

the final models are shown in Figures 4-23, 4-24, and 4-25. 

Table 4-8. Calibrated Coefficients for Scale Parameter Models 

Emissions 
scenarios 

Coefficient 
values Goodness-of-fit 

A2 
C1 0.34 Se 0.007 

C2 0.006 Se/Sy 0.48 
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C3 0.017 e -0.005 

C4 1936.86 e/y -0.012 

A1B 

C1 0.34 Se 0.007 

C2 0.00637 Se/Sy 0.334 

C3 0.0197 e -0.003 

C4 1936.84 e/y -0.008 

B1 

C1 0.345 Se 0.01 

C2 0.065 Se/Sy 0.493 

C3 3 e -0.007 

C4 0.045 e/y -0.02 

C5 70   
 

 

Figure 4-23. Scale Parameter Model for CSIRO Precipitation Data for SRES A2. 
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Figure 4-24. Scale Parameter Model for CSIRO Precipitation Data for SRES A1B. 

 

 

Figure 4-25. Scale Parameter Model for CSIRO Precipitation Data for SRES B1. 
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Goodness-of-Fit.  As with the location parameter, the model coefficients for the 

scale parameter were calibrated with numerical optimization and then adjusted for 

physical rationality.  The relative bias for scenarios A2, A1B, and B1 equaled -0.012, -

0.008, and -0.02, respectively.  Based on Figures 4-23, 4-24, and 4-25, the negative 

relative bias results from the few high points in the calculated scale parameter values.  

Analysis of the window length showed that these high points result from the calculation 

of the second moment of the data based on small sample sizes.  This allows the scale 

parameter to be influenced by individual events within the time series.  Therefore, it is 

reasonable that the models provide local biases due to the data rather than the models 

selected for the scale parameter. 

The ratio between the standard error and the standard deviation equaled 0.48, 

0.33, and 0.49 for the A2, A1B, and B1 scenarios, respectively.  These values suggest 

that each of the models provided a statistically significant improvement in the estimation 

of the scale parameter compared to the mean of the data.  The values are higher than the 

location parameter models, which is expected due to the increased variation within the 

time series data, as previously discussed.   

 The goodness of fit suggests that the calibrated models provide a good estimate of 

the scale parameter for the A2, A1B, and B1 scenarios.  In addition, the nonlinear, 

increasing model structure for the A2 and A1B scenarios meet the hypothesis based on 

previous studies and the emissions scenarios.  Likewise, the increasing and then 

decreasing model structure for the B1 scenario is expected based on the stabilization of 

emissions in the twenty-first century for the B1 scenario.  Therefore, the developed scale 
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parameter models provide a good statistical fit and meet the specified physically 

rationality requirements. 

4.3.4.5 Shape Parameter 
 

Next, the shape parameter time series for each emissions scenario were analyzed.  

Figures 4-26, 4-27, and 4-28 show the shape parameter calculated within 51-yr windows 

for the A2, A1B, and B2 scenarios, respectively.  It is apparent from the figures that the 

shape parameter calculated within 51-yr windows suggests an irrational sinusoidal shape.  

Therefore, further anaysis was conducted to determine the cause of the variation in the 

shape parameter data. 

  

Figure 4-26. Median, Mean, 25th Percentile, and 75th Percentile of Shape 
Parameters for the 12 CSIRO Grid Cells from 1926 to 2074 for the A2 Scenario. 
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Figure 4-27. Median, Mean, 25th Percentile, and 75th Percentile of Shape 
Parameters for the 12 CSIRO Grid Cells from 1926 to 2074 for the A1B Scenario. 

 

Figure 4-28. Median, Mean, 25th Percentile, and 75th Percentile of Shape 
Parameters for the 12 CSIRO Grid Cells from 1926 to 2074 for the B1 Scenario. 

Based on the scale parameter analysis, it was assumed that this was a result of the 

sensitivity of the shape parameter to individual precipitation events.  As with the scale 

parameter analysis, the window length was increased to 71-yrs and the results are shown 

in Figure 4-29.  It is apparent that the increase in window length begins to smooth the 
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change in the parameter value, but the sinusoidal trend is still apparent.  Therefore, the 

window length was increased to 91-yrs and 111-yrs and the results are shown in Figures 

4-30 and 4-31, respectively.   

 

Figure 4-29. Shape Parameter as a Function of Time Calculated within 71-yr 
Windows. 

 

Figure 4-30. Shape Parameter as a Function of Time Calculated within 91-yr 
Windows. 
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Figure 4-31. Shape Parameter as a Function of Time Calculated within 111-yr 
Windows. 

The window length greatly influences the temporal trend of the shape parameter.  

Martins and Stedinger (2000) confirm that irrational values can result from estimating the 

shape parameter based on small samples.  Likewise, they showed that the root-mean-

square error of quantile estimates increases as the sample size decreases.  Additionally, 

Koutsoyiannis (2004) proposed the regionalization of the shape parameter due to poor 

shape parameter estimates from short record lengths at individual stations.  This suggests 

that the moving windows method for estimating the shape parameter may not provide 

rational estimates of the shape parameter due to the reduction in sample size.  This is 

supported by the smoothing of the sinusoidal trend in the shape parameter as the window 

length is increased.   

Based on these studies, shape parameter estimates calculated from sub-samples 

within the entire 200-yr record will most likely be poor estimates of the true parameter 
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values.  Therefore, it was determined that the shape parameter should be held at a 

constant value, calculated from the entire time series.  Kharin and Zwiers (2005) made 

similar assumptions based on their analysis of changes in the GEV parameters of the 

global precipitation distribution.  They found that varying the shape parameter based on 

the trend identified in their analysis was not statistically different from a model in which 

the parameter was held constant.  These results were true for the A2, IS92a, and B2 

scenarios in the study.   

The shape parameter was calculated for each CSIRO grid based on the respective 

200-yr record.  The results are shown in Table 4-9.  The average shape parameter value 

equals -0.05.  Martins and Stedinger (2000) claim that hydrologic extremes most likely 

follow a GEV Type II distribution with shape parameters ranging from 0 to 0.3 based on 

the notation used in this study; however, they state that a reasonable hydrologic 

distribution can result from a shape parameter ranging from -0.3 to 0.3.  Therefore, while 

the negative shape parameter for the GCM data suggests a GEV Type III distribution, it is 

still a rational distribution for hydrologic data.  Additionally, shape parameters with a 

magnitude less than 0.3 represent the Gumbel distribution (Stedinger et al. 1993), which 

suggests that within this range, the shape parameter does not have as great an influence 

on the distribution.  Likewise, Kharin and Zwiers (2005) also found a fairly constant, 

near zero shape parameter for their global analyses, suggesting a Gumbel distribution 

rather than a GEV Type II or III distribution.  Therefore, a constant shape parameter 

equal to -0.05 was selected to represent the CSIRO simulated precipitation data 

distribution within the 12 grids for the SRES A2.  
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Table 4-9. Shape Parameter for 12 Grids from CSIRO Precipitation Data Based 
on 200-yr Recordsfor SRES A2. 

Grid 1 2 3 4 5 6 7 8 9 10 11 12 
k -0.05 -0.04 -0.09 -0.01 -0.07 -0.09 0.05 -0.08 -0.02 -0.01 -0.11 -0.04 

 

The shape parameters for grids 1 through 12 and SRES A1B are shown in Table 

4-10 for each entire time series.  The average shape parameter equals -0.05 and will be 

used as a constant value to represent the data for the A1B scenario. 

Table 4-10. Shape Parameter for 12 Grids from CSIRO Precipitation Data. 

Grid 1 2 3 4 5 6 7 8 9 10 11 12 
K -0.08 -0.05 -0.02 -0.04 -0.16 -0.02 0.07 -0.06 -0.08 -0.02 -0.07 -0.05 

 

 As with the A2 and A1B scenarios, the shape parameter was held constant for the 

entire time series for the B1 scenario.  The shape parameter was calculated for each grid 

and is shown in Table 4-11.  The spatial mean for the B1 scenario shape parameter equals 

-0.02. 

Table 4-11. Shape Parameter for 12 Grids from CSIRO Precipitation Data. 

Grid 1 2 3 4 5 6 7 8 9 10 11 12 
K -0.02 -0.03 -0.02 -0.08 -0.04 -0.05 0.02 0.01 -0.03 -0.06 0.01 0.03 

 

4.3.4.6 Comparison of SRES Statistical Models  
The statistical models developed for the location and scale parameter for the 

SRES A2, A1B, and B1 are shown in Figures 4-32 and 4-33, based on the CSIRO annual 

maximum 24-hr precipitation.  The models suggest that the A1B scenario results in the 

greatest change in precipitation extremes, followed by the A2 scenario and the B1 

scenario.  The B1 scenario represents the lowest emissions rate.  Therefore, it is expected 

that the B1 GEV parameters experience the lowest rate of change over time.  However, 
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the A2 scenario is defined as the highest emissions rate between the three scenarios.  This 

suggests that the A2 GEV parameters should increase at the greatest rate rather than the 

A1B scenario.  Therefore, further analysis was conducted to determine the cause of this 

shift in rank from emissions rate to GEV parameter magnitude for each scenario. 

 

Figure 4-32. Statistical Models for GEV Location Parameter as a Function of Time 
based on CSIRO Annual Maximum 24-hr Precipitation. 
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Figure 4-33. Statistical Models for GEV Scale Parameter as a Function of Time 
based on CSIRO Annual Maximum 24-hr Precipitation. 

 

The annual maximum 24-hr precipitation time series for the A1B and A2 

scenarios were compared to determine whether the disagreement in rank between the 

emissions scenarios and the resulting GEV parameter values existed within the simulated 

precipitation data or was an error in statistical modeling.  Table 4-12 provides the mean 

and standard deviation of the annual maximum 24-hr precipitation from 1901-2100 for 

the A2 and A1B scenarios for grids 1 through 12.  The mean annual maximum 

precipitation for scenario A1B is greater than or equal to the mean of A2 for 11 out of 12 

grids.  Likewise, the standard deviation of the A1B scenario precipitation data is greater 

than or equal to A2 for 8 out of the 12 grids.  This suggests that the simulated 
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precipitation data for scenario A1B is heavier than for scenario A2, which supports the 

statistical models for the GEV parameters.  

The precipitation data for scenario A1B may exceed scenario A2 because of the 

atmospheric concentration of greenhouse gases rather than the emission rates throughout 

the twenty-first century.  Regardless of the emissions rates at the end of a given time 

period, the path of the emissions rate throughout the time period influences the overall 

atmospheric concentration of greenhouse gases (See Chapter 2 for more details).  The 

atmospheric concentration of greenhouse gases for the A1B scenario may be greater than 

the A2 scenario at points throughout the twenty-first century, which may cause large 

precipitation events that influence the GEV distribution parameters.  Therefore, the 

models developed should not be extrapolated beyond 2100, as the precipitation 

distribution for the A2 scenario may surpass the A1B scenario in magnitude. 

Table 4-12. Characteristics of the A2 and A1B Simulated Annual Maximum 24-hr 
Precipitation Data from CSIRO. 

A2 1 2 3 4 5 6 7 8 9 10 11 12 
Mean 51.9 47.9 43.2 54.0 51.2 44.0 55.4 52.0 47.1 51.1 50.1 52.0 

std. dev. 14.1 11.5 9.5 12.6 11.3 9.6 13.7 12.3 11.5 14.0 10.7 12.5 
A1B 1 2 3 4 5 6 7 8 9 10 11 12 
mean 52.3 48.3 43.3 54.3 50.8 44.7 55.9 52.5 47.1 51.2 50.5 52.5 

std. dev. 13.6 11.5 10.2 12.6 10.7 10.4 13.9 13.1 10.8 13.7 11.6 12.8 
 

4.3.4.7 Analysis of Regional GEV Parameters from Observed Data. 
The final step to assess the model rationality of the GEV parameters for the three 

emissions scenarios was to ensure that the parameters were representative of observed 

precipitation in the study region.  Precipitation records were retrieved from 32 rain gauge 

locations within the study region.  The coordinates for each rain gauge location are 

shown in Table 4-13. 
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Table 4-13. Rain Gauge Locations and Coordinates for Region of Interest. 

Location Coordinates 

M
ar

yl
an

d 

Baltimore 39°10'N / 76°41'W 
Brighton 39°11'N / 77°00'W 

Chestertown 39°13'N / 76°03'W 
Conowingo Dam 39°39'N / 76°11'W 

Cumberland 39°38'N / 78°50'W 
Dalecarlia Reservoir 38°56'N / 77°07'W 

Emmitsburg 39°41'N / 77°17'W 
Hancock 39°42'N / 78°11'W 
Oakland 39°25'N / 79°24'W 
Salisbury 38°22'N / 75°35'W 

V
ir

gi
ni

a 

Alta Vista 37°04'N / 79°10'W 
Appomattox 37°21'N / 78°50'W 

Ashland 37°45'N / 77°29'W 
Bremo Bluff 37°43'N / 78°17'W 

Hopewell 37°18'N / 77°17'W 
Martinsville 36°42'N / 79°52'W 
Mt. Weather 39°04'N / 77°53'W 

Norfolk 36°54'N / 76°12'W 
Washington, DC (Reagan) 38°51'N / 77°02'W 

Richmond 37°30'N / 77°19'W 
Roanoke 37°19'N / 79°58'W 
Somerset 38°15'N / 78°16'W 
Suffolk 36°44'N / 76°36'W 

West Point 37°34'N / 76°48'W 
Williamsburg 37°18'N / 76°42'W 

D
el

aw
ar

e 

Dover 39°16'N / 75°31'W 
Georgetown 38°38'N / 75°27'W 

Lewes 38°47'N / 75°08'W 
Milford 38°54'N / 75°26'W 
Newark 39°40'N / 75°45'W 

Wilmington 39°40'N / 75°36'W 
 

The GEV parameters for the annual maximum precipitation time series for each 

location were calculated and are shown in Table 4-14.  Then, the KS-1 test was applied to 

each the precipitation data at each gauge location to determine whether the GEV 
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distribution with the calculated parameters is representative of the data.  The calculated 

test statistic along with the critical values for each sample size and the 1% and 5% levels 

of significance are also shown in Table 4-14.  Based on the KS-1 test results, the null 

hypothesis is accepted at each location, which implies that the annual maximum 

precipitation data at each of the 32 rain gauges follows the GEV distribution with the 

specified parameter values. 

Table 4-14. GEV Parameters and KS-1 Test Results for the 32 Rain Gauges in the 
MD-VA-DE Region, with CV = Critical Value. 

  GEV Parameters KS1 Test 

Rain Gauge Location Location Scale Shape 
Test 

Statistic n 
CV 

(5%) 
CV 

(1%) 
Alta Vista 2.440 0.741 -0.072 0.083 55 0.183 0.220 

Appomattox 2.419 0.708 0.258 0.076 64 0.170 0.204 
Ashland 2.450 0.850 -0.061 0.092 62 0.173 0.207 

Baltimore 2.414 0.713 0.156 0.093 61 0.174 0.209 
Bremo Bluff 2.545 0.860 -0.079 0.100 63 0.171 0.205 

Brighton 2.298 0.834 0.094 0.090 46 0.201 0.240 
Chestertown 2.408 0.778 0.125 0.058 62 0.173 0.207 

Conowingo Dam 2.408 0.778 0.125 0.075 61 0.174 0.209 
Cumberland 1.777 0.478 0.124 0.146 37 0.224 0.268 

Dalecarlia Reservoir 2.433 0.766 0.143 0.122 62 0.173 0.207 
Dover 2.670 0.853 0.115 0.082 62 0.173 0.207 

Emmitsburg 2.108 0.652 0.264 0.062 52 0.189 0.226 
Georgetown 2.434 0.606 0.223 0.120 49 0.194 0.233 

Hancock 1.988 0.567 0.166 0.163 49 0.194 0.233 
Hopewell 2.335 0.714 0.256 0.052 75 0.157 0.188 

Lewes 2.607 0.709 0.128 0.066 60 0.176 0.210 
Martinsville 2.383 0.657 0.147 0.074 60 0.176 0.210 

Milford 2.457 0.757 0.106 0.082 49 0.194 0.233 
Mt. Weather 2.424 0.878 0.035 0.078 79 0.153 0.183 

Newark 2.322 0.704 0.280 0.071 58 0.179 0.214 
Norfolk 2.755 0.934 0.186 0.054 64 0.170 0.204 
Oakland 1.859 0.530 0.088 0.070 62 0.173 0.207 

Richmond 2.531 0.804 0.119 0.070 62 0.173 0.207 
Roanoke 2.342 0.657 0.141 0.097 62 0.173 0.207 
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  GEV Parameters KS1 Test 

Rain Gauge Location Location Scale Shape 
Test 

Statistic n 
CV 

(5%) 
CV 

(1%) 
Salisbury 2.628 0.890 0.133 0.086 62 0.173 0.207 
Solomons 2.452 0.998 0.224 0.119 44 0.205 0.246 
Somerset 2.161 0.697 0.330 0.119 43 0.207 0.249 
Suffolk 2.645 0.825 0.231 0.067 65 0.169 0.202 

Washington, DC 
(Reagan) 2.142 0.640 0.362 0.075 62 0.173 0.207 

West Point 2.455 0.795 0.220 0.121 56 0.182 0.218 
Williamsburg 2.575 1.005 0.354 0.084 62 0.173 0.207 
Wilmington 2.402 0.611 0.267 0.117 62 0.173 0.207 

 

Next, the spatial mean within the region was calculated for each of the GEV 

parameter values to develop regional location, scale, and shape parameters.  In GIS, a 

shapefile was created that consisted of the location of each rain gauge based on the 

latitude and longitude coordinates.  The spatial reference of the shapefile was set to 

Geographic Coordinate System, North American Datum 1983.  Census tract data were 

retrieved from www.esri.com to outline the region of interest including the states of 

Maryland, Virginia, and Delaware.  The spatial extent of the shapefile was then limited to 

the state boundaries and a longitude boundary equal to 80.23W.  As mentioned 

previously, this additional boundary was implemented so as to not misrepresent the 

mountainous, western portion of Virginia from which precipitation data were not 

retrieved.  The areas within these boundaries were then allocated to the nearest rain gauge 

based on a Euclidean distance calculation.  The allocation results are shown in Figure 4-

34.   
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Figure 4-34. Area Allocation for Spatial Mean Calculation for the 32 Rain Gauge 
Locations. 

 

The spatial mean was calculated based on the percentage of the total area 

allocated to each rain gauge based on the following equation: 

Spatial Mean =     Eq. 4-6 

where n = the total number of rain gauges in analysis; i = specifies the rain gauge;Ai = 

area allocated to rain gauge ‘i’; and Ci = mean coefficient value at rain gauge ‘i'.  The 

final spatial mean parameter values were as follows: (1) location = 2.44 (in.); (2) scale = 

0.772 (in.); and (3) shape = 0.155.   
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periods.  The analysis suggests that lower return periods are less sensitive to the spatial 

mean GEV parameters than higher return periods for all locations.  Estimates based on 

the spatial mean GEV parameters tend to overestimate the north and western portion of 

the region and underestimate the south-eastern portion of the region.   

Williambsurg, Hancock, Oakland, and Cumberland appear to be the most 

sensitive to the spatial mean GEV parameters.  Hancock, Oakland, and Cumberland are 

located in the most north-west portion of Maryland, which suggests that the spatial mean 

should be used with caution in this region.  This region is more mountainous than the 

remaining parts of the region.  However, the rain gauges surrounding Williamsburg, such 

as Norfolk and West Point, do not show significant biases relative to Williamsburg.  This 

suggests that the sensitivity is location specific for Williambsurg.  The scale and shape 

parameter for Williambsurg are the greatest and second greatest in magnitude, 

respectively, compared to the values for the other rain gauge locations.  Both of these 

parameters influence extreme values, which mathematically explains the large bias when 

the spatial mean parameter values are used for Williambsurg.  However, the deviation of 

the parameter values from the mean can only be explained by the observed precipitation 

data.  This could be the result of poor sampling at the Williamsburg rain gauge. 

4.3.5 Comparison of Observed and GCM Simulated GEV Parameters. 
The GEV parameters were calculated for the region based on both observed data 

from the 32 rain gauges and simulated data from the GCM selected.  The parameters 

were then compared to determine whether the GCM values were representative of the 

observed data in the region.  The coefficient, C1 (see Tables4-5 and 4-8), for location and 

scale parameter models was compared to the spatial mean values for each parameter.  
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The C1 coefficient represents the y-intercept of each parameter model.  Because the 

location and scale parameters are relatively stationary in the twentieth century, the C1 

coefficient is a reasonable estimate of each parameter for the twentieth century.  

Likewise, the constant shape parameter calculated for the GCM data was compared to the 

regional spatial mean value. 

It is apparent that the location, scale, and shape parameters are greater for the 

spatial mean of the observed precipitation data within the MD-VA-DE region than those 

derived from the GCM simulations.  The shape parameter for the observed data is 

positive, which suggest a Type II distribution, a popular representation of hydrologic 

data.  Additionally, Koutsoyiannis (2004) found that a constant shape parameter value 

equal to 0.15 was representative of rainfall distributions throughout Europe and North 

America.  Therefore, the spatial mean shape parameter value for the MD-VA-DE region 

is representative of many geographic locations as a regional shape parameter, and most 

likely a better estimate than the -0.05 shape parameter calculated based on the GCM data.   

 These results may lead to the intepretation that the GCM simulation of annual 

maximum 24-hr precipitation may underestimate realistic precipitation extremes.  It is 

difficult for current GCMs to accurately simulate precipitation extremes for small spatial 

extents.  Despite the availability of GCM projections for specified latitudinal and 

longitudinal grids, the confidence in the changes projected by global models decreases at 

smaller scales.  In fact, for smaller scales, higher intensities and rainfall depths will occur.  

AOGCMs have coarse resolutions and large scale systematic errors, whereas extreme 

precipitation events generally occur on a smaller spatial scale.  So while AOGCMs have 

proven to predict temperature extremes fairly well, the intensity, frequency, and 
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distribution of precipitation extremes has proven to be more difficult to simulate (Randall 

et al. 2007).  This was confirmed in a study conducted by Sun et al. (2006) of daily 

precipitation simulated by 18 AOGCMs.  The results showed that the models 

underestimated both the frequency and intensity of heavy precipitation events, defined as 

10 mm/day.  However, Iorio et al. (2004) found that simulations of daily precipitation 

events improved as the resolution of the AOGCM increased.  Therefore, as the resolution 

of AOGCMs increase with advancements in modeling, projections of extreme 

precipitation are expected to improve as well (Randall et al. 2007). 

 This also is a common issue when precipitation is estimated at an ungauged site 

based on precipitation within the same region.  For example, depth-area curves are often 

used in hydrology to adjust point rainfalls to represent mean rainfalls over larger areas.  

This method results in a reduction in a point 24-hr rainfall depth by 10% for an area of 

400 mi2.  The grid size for the CSIRO GCM outputs is roughly 36,000 km2, which would 

suggest that the estimate of precipitation over the entire area would be greatly reduced 

from the precipitation event at a specific location of interest. 

Based on these observations, it is clear that the magnitudes of the parameters 

calculated based on the GCM data are less than those of the observed data; however, for 

this study it was assumed that the rate of change of the parameters is still applicable for 

climate change scenarios.  Therefore, it was determined that parameter models would be 

based on the rate of change for the scale and location parameters developed based on the 

GCM simulated data and the magnitude of the observed GEV parameters.  As GCMs 

become more sophisticated in the future and provide better estimates of extreme 
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precipitation data at a regional scale, this method can be adjusted to rely entirely on the 

parameter models developed based on the GCM simulations. 

The fitted parameter models were scaled so that the 1950 parameter value was 

within 0.001 of the spatial mean for the observed parameter values.  The assumption was 

made that while the magnitude of the parameter values differ, the rate of change 

determined from the CSIRO GCM data was representative of the expected changes in the 

regional spatial mean GEV parameters over the twentieth and twenty-first centuries.  The 

final models are shown in Figures 4-36 and 4-37 and the coefficients are shown in Tables 

4-15, 4-16, and 4-18 for the A2, A1B, and B1 scenarios, respectively. 

Figure 4-36. Final Location Parameter Model. 
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Figure 4-37. Final Scale Parameter Model. 

Table 4-15. Final Location, Scale, and Shape Parameter Coefficients 

for the A2 Scenario. 

Parameter 
Coefficient 

Values 

Location 

C1 2.31 
C2 0.1114995 
C3 0.0085 
C4 1928.1861 

Scale 

C1 0.765 
C2 0.006 
C3 0.017 
C4 1936.86 

Shape 0.155 
 

Table 4-16. Final Location, Scale, and Shape Parameter Coefficients 

for the A1B Scenario. 

Parameter Coefficient Values 

Location 
C1 2.278 
C2 0.1315 
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Parameter Coefficient Values 
C3 1926.008 
C4 -1.388 

Scale 

C1 0.765 
C2 0.00637 
C3 0.0197 
C4 1936.84 

Shape 0.155 
 

 

 

 

Table 4-17. Final Location, Scale, and Shape Parameter Coefficients 

for the B1 Scenario. 

Parameter Coefficient 
Values 

Location 

C1 2.31 
C2 0.1115 
C3 0.00852 
C4 2.186 
C5 1.227 
C6 1.2 
C7 1.7 
C8 0.005 
C9 13.4 

Scale 

C1 0.77 
C2 0.065 
C3 3 
C4 0.045 
C5 70 

Shape 0.155 
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4.3.6 Sensitivity Analysis for Twentieth Century Models 
The data base used to model the GEV parameters over time was simulated by the 

CSIRO Mark 3.5 GCM based on measured greenhouse gas emissions data from 1900 

through 2000 and three projected scenarios of greenhouse gas emissions data for the year 

2001 to 2100.  The data for the latter period varied with the emissions scenario.  

Realistically, the GEV parameters should be the same throughout the twentieth century 

regardless of the emission scenario.  However, the scale and location parameters for the 

three emissions scenarios differ slightly during the twentieth century time period due to 

the inclusion of the twenty-first century GCM data in fitting the functions.   

A sensitivity analysis was conducted to determine whether or not the differences 

of the functions for the twentieth century caused a significant change in the precipitation 

event that would result from the twentieth century parameters.  Because the 100-yr 

rainfall is often used in design and the greater return periods are more sensitive to the 

parameter values, the magnitude of the 100-yr rainfall based on the models developed for 

A2, A1B, and B1 were compared from 1901 to 2000, as the emissions scenarios diverge 

in the year 2000.   

The 100-yr rainfall for each scenario is shown in Figure 4-38 for the twentieth and 

twenty-first centuries.  The average value of the 100-yr rainfall for all three scenarios 

equals 7.64 in. for the twentieth century.  The largest difference in the estimated 100-yr 

rainfall for a given year during the twentieth century for scenarios A1B and A2 occurred 

in the year 2000 and equaled 0.040 in. or 0.5% of the average 100-yr rainfall from 1901 

to 2000.  The largest difference in the estimated 100-yr rainfall for a given year for 

scenarios A1B and B1 equaled 0.036 in. or 0.5% of the average 100-yr rainfall for the 
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time period and occurred in 2003.  The largest difference in the estimated 100-yr rainfall 

for a given year for scenarios B1 and A2 occurred in 1901 and equals 0.013 in. or 0.2% 

of the average 100-yr rainfall for the time period.     

 

Figure 4-38. 100-yr Storm as a Function of Time and Emissions Scenario. 

 In the year 2100, the difference in the 100-yr rainfall for the three scenarios are 

much larger (see Figure 4-38), by as much as 0.78 in. or 10% of the average 100-yr 

rainfall in the twentieth century.  The less than one-half percent errors for the 100-yr 

rainfall in the year 2000 is, therefore, not a meaningful contribution to errors in the 

twenty-first century. 

4.3.7 Final Climate Change Adjustment Factor 
 The final climate change adjustment factor consists of the difference in the 

expected storm depth for a given return period from the observed year to the design year.  

The temporal changes in the storm depths for the 100-yr, 50-yr, 20-yr, 10-yr, and 2-yr 
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return periods are graphed in Figures 4-39, 4-40, and 4-41 for the A2, A1B, and B1 

emissions scenarios, respectively.  The figures are based on the cumulative distribution 

for each emissions scenario over time based on the statistical models for the GEV 

parameters.  The change in additional return periods can be calculated based on the 

statistical models for each GEV parameter and emissions scenario previously defined.   

To adjust an observed precipitation event, the return period of the event in the 

precipitation record must be calculated first.  Then, the expected precipitation depth for 

the particular return period can be identified based on the emissions scenario and the year 

using the statistical models for the GEV parameters.  Finally, the ratio of the expected 

precipitation depth in the design and the observation year will be multiplied by the 

observed precipitation depth to determine the adjusted value in the design year.  This 

method would be applied to the entire precipitation record to develop a record with the 

same length under stationary conditions in the design year. 
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Figure 4-39. Final Climate Change Adjustment Factor Graph for SRES A2. 

 

Figure 4-40. Final Climate Change Adjustment Factor Graph for SRES A1B. 
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Figure 4-41. Final Climate Change Adjustment Factor Graph for SRES B1. 

 

4.3.7.1 Verification 
 Kharin and Zwiers (2005) used the second version of the CCCma coupled global 

climate model (CGCM2) to provide future estimates of the 20-yr return period.  Kharin et 

al. (2007) used the ensemble median of data from 14 CGCMs provided by the Program 

for Climate Model Diagnosis and Intercomparison to also estimate future 20-yr return 

periods.  The results from these studies will be compared to the present study and 

discussed herein. 

 Table 4-18 shows the projected percent increase in the 20-yr storm from the 

current study for the MD-VA-DE region and by Kharin et al. (2007) for global land areas 

and the northern hemisphere for the time periods 2046-2065 and 2081-2100, relative to 
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closest to the land values provided by Kharin et al. (2007); however, the current study is 

1.2% and 2.3% below the range provided by Kharin et al. (2007) for land for the 2046-

2065 and 2081-2100 time periods, respectively.  The A1B scenario projections provided 

by the current study are within the range of the land estimates provided by Kharin et al. 

(2007) for both time periods.  The B1 scenario projections for the current study equal the 

lower bound provided by Kharin et al. (2007) for land and is 0.5% lower than the range 

for 2081-2100.  Therefore, while the magnitude of the projected increases is similar, the 

current study slightly underpredicts the projected global increases by Kharin et al. (2007) 

for land areas.   

Table 4-18. Change in 20-yr Storm from Time Periods 2046-2065 and 2081-2100 
Relative to 1981-2000. 

 A2 A1B B1 
 2046-2065 2081-2100 2046-4065 2081-2100 2046-4065 2081-2100 

This Study 4.7% 9.3% 6.3% 13.3% 4.6% 6.4% 

Kharin et al. 
2007: Land       

Kharin et al. 
2007: NHE       

 

While the global land and northern hemisphere projections provided by Kharin et 

al. (2007) suggest that the current study underestimates the increase in precipitation with 

climate change, regional estimates provided by Kharin et al. 2007 shown in Figure 4-42 

suggest that the MD-VA-DE region falls within the lower range of the land and northern 

hemisphere estimates.  For example, for the time period 2046-2065, Figure 4-42 suggests 

a 5-10% increase in the MD-VA-DE region for the A1B scenario while other land areas 

suggest a 15-20% increase relative to the time period 1981-2000.  Likewise, from 2081-

2100, Figure 4-43 suggests that the MD-VA-DE region will experience a 10-15% 
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increase in the 20-yr return period while other land areas will experience a 20-30% 

increase.  Therefore, the lower projections from this study may be the result of regional 

versus larger scaled estimates relative to the time period 1981-2000.   

 

Figure 4-42. Projected Percent Increase in the 20-yr Return Period from 1981-2000 
to 2046-2065 provided by Kharin et al. (2007). 
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Figure 4-43. Projected Percent Increase in the 20-yr Return Period from 1981-2000 
to 2081-2100 provided by Kharin et al. (2007). 

 The results from this study suggested that the A1B scenario would affect 

precipitation at a faster rate than the A2 scenario, which differs from the emissions rates 

for each scenario.  Kharin et al. (2007) found that the A1B scenario affected precipitation 

at a faster rate as well for the 2046-2065. However, the A2 scenario had a greater effect 

on precipitation from 2081-2100.  Therefore, as previously stated, the models developed 

for this study should not be extrapolated beyond 2100, as the effects of the A2 scenario 

will most likely eventually surpass those of the A1B scenario.  This is the result of the 

variations inherent to the data used to calibrate the models. 

 Kharin and Zwiers (2005) estimated the changes in the scale and location 

parameter based on the same method used in this study, but with 51-yr windows for each 

parameter.  Figures 4-44 and 4-45 show the regional percent change from the year 2000 

to 2050 for the A2 scenario.  Table 4-19 shows the percent change for the current study in 
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the scale and shape parameter from 2000 to 2050 for each scenario.  Kharin and Zwiers 

(2005) suggest a 0 to 2% increase in both the scale and location parameter for the A2 

scenario in the MD-VA-DE region based on Figures 4-44 and 4-45.  The results for the 

current study suggest a 3% and 4.3% increase for the scale and location parameter, 

respectively.  Therefore, while the magnitude of the increase is the same, the current 

study provided slightly greater estimated increases in the GEV parameters than Kharin 

and Zwiers (2005) for the study region.  Therefore, while Kharin et al. (2007) provided 

estimates greater than those found in this study, Kharin and Zwiers (2005) projected 

slightly lower increases in the GEV parameters than found in this study.      

Figure 4-44. Percent Change in Scale Parameter from 2000 to 2050 provided by 
Kharin and Zwiers (2005). 
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Figure 4-45. Percent Change in Location Parameter from 2000 to 2050 provided by 
Kharin and Zwiers (2005). 

 

Table 4-19. Change in GEV Scale and Location Parameter from 2000 to 2050 for 
this Study. 

SRES Scale Location 
A2 3.0% 4.3% 

A1B 4.7% 5.1% 
B1 4.2% 3.1% 

 

4.4 Rainfall-Runoff Model Selection 
 With the 24-hour rainfall event adjusted from observed climate conditions to 

design year climate conditions, the next step was to select a method to convert the rainfall 

to runoff.  To develop a regional adjustment method, the rainfall-runoff model needed to 

be applicable to a variety of watersheds.  The NRCS graphical-peak-discharge method 

was selected based on the availability of input data and its widely accepted use in 

hydrology.  The NRCS model is a standard approach that uses the same inputs and model 

structure as currently used in design (Soil Conservation Services 1986).   
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The selection of appropriate curve numbers and watershed characteristics to be 

used in applying the NRCS graphical-peak-discharge method was also necessary.  The 

initial approach was to base these factors on the urbanization condition of the watershed 

during the observation year and the design year; however, after finalizing the 

urbanization adjustment component which will be explained in Section 4.5, it was 

determined that rural characteristics would be assigned to the NRCS method variables to 

maintain consistency in the application regardless of the watershed being analyzed.  Then 

the rural peak discharge estimates will be converted to urbanized values, as explained in 

Section 4.5. 

The curve number selected for rural conditions and soil groups A, B, C, and D 

equaled 39, 61, 74, and 80, respectively.  The land use description selected for rural 

conditions was good conditions with grass cover on 75% or more of the area (McCuen 

2005).  Specification of the curve number values enables the simplification of the NRCS 

graphical-peak-discharge method. 

 
The NRCS graphical-peak-discharge method is represented by the following 

equation provided by McCuen (2005): 

QAqq up **     Eq. 4-7 

where pq =peak discharge (cfs); uq = peak unit discharge (cfs/mi^2/in.); A = watershed 

area (mi^2); and Q = runoff depth (in.). 

The unit peak discharge is calculated based on the following equation fit to the 

NRCS graphical method: 
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Log(qu) = C0 + C1log(TC) + C2(log(TC))2   Eq. 4-8 

where C0, C1, and C2 are coefficients based on the variables Ia/P and shown in Table 4-20 

and TC is the time of concentration (hr).   

 

Table 4-20. TR-55 Coefficients for Unit Peak Discharge Equation for Type II Storm. 

P Ia/P c0 c1 c2 
10.76923 0.1 2.55323 -0.61512 -0.16403 
3.589744 0.3 2.46532 -0.62257 -0.11657 
3.076923 0.35 2.41896 -0.61594 -0.0882 
2.692308 0.4 2.36409 -0.59857 -0.05621 
2.393162 0.45 2.29238 -0.57005 -0.02281 
2.153846 0.5 2.20282 -0.51599 -0.01259 

 

The method used to calculate the time of concentration (tc) was dependant on the 

drainage area of the watershed.  For watersheds of 2,000 acres or less, the time of 

concentration was calculated based on the lag equation: 

5.0
7.0

8.0 *9
1000

**00526.0 S
CN

Ltc    Eq. 4-9 

where tc = time of concentration in minutes, L = length of the watershed (ft), CN = the 

curve number, and S = slope (ft/ft) (McCuen 2005).  The length of the watershed for the 

lag equation is calculated based on the following equation:  

L = 209*A0.60      Eq. 4-10 

where L = length (ft) and A = area (acres). 

For watersheds with an area greater than 2,000 acres, a method based on 

hydraulic geometry relationships was developed.  The method assumes that the time of 

concentration refers to all channel flow (i.e., ignores sheetflow).  First, the watershed was 
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divided into subwatersheds and the drainage area and channel length within each 

subwatershed is calculated.  Then, the bankfull discharge (cfs) was estimated based on 

the following equation derived from Dunne and Leopold (1978): 

Q = 52*A0.829      Eq. 4-11 

where Q = bankfull discharges (cfs) and A = area (square miles).  Next, the travel 

velocity is calculated based on the bankfull discharge for each subwatershed and the 

following equation derived from Dunne and Leopold (1978): 

V = 0.39 * A-0.1634*Q0.44     Eq. 4-12 

where V = velocity (ft/s) and A = area (square miles).  The travel velocity for the channel 

within each subwatershed is then divided by the length of the channel segment within the 

subwatershed.  This results in the travel time through each subwatershed.  The time of 

concentration equals the sum of the travel times for each subwatershed. 

Finally, the depth of runoff in inches is calculated based on the NRCS rainfall-

runoff depth relationship as follows: 

)8.0(
)2.0( 2

SP

SP
Q      Eq. 4-13 

where S = Ia /0.2 (McCuen 2005). 

 
First, the TR-55 coefficient values for the peak unit discharge were graphed and a 

function was fit to each coefficient based on the Ia/P variable, show in Figures 4-46, 4-

47, and 4-48.  The curve number values were then substituted into each of the equations 

to produce four simplified equations, one for each soil group, as a function of only 

precipitation.  The resulting functions for each TR-55 coefficient value are shown in 
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Table 4-21.  It is important to note that these equations must not be extrapolated beyond 

the Ia/P less than 0.1 or greater than 0.5. 

Figure 4-46. C0 as a function of Ia/P. 

Figure 4-47. C1 as a Function of Ia/P. 
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Figure 4-48. C2 as a Function of Ia/P. 

 

Table 4-21. Equations for TR-55 Coefficients for Unit Peak Discharge Equation. 

Soil 
Group C0 C1 C2 

A -21.861/(P2) + 1.486/P + 2.527 15.217/( P2) - 2.215/P -0.558 5.911/( P2) + 0.135/P - 0.176 

B -3.653/( P2) + 0.607/P + 2.527 2.542/( P2) - 0.905/P -0.558 0.988/( P2) + 0.055/P - 0.176 

C -1.103/( P2) + 0.334/P + 2.527 0.768/( P2) - 0.498/P -0.558 0.298/( P2) + 0.03/P - 0.176 

D -0.559/( P2) + 0.238/P + 2.527 0.389/( P2) - 0.354/P -0.558 0.151/( P2) + 0.022/P - 0.176 

 

 The peak unit discharge equation must be solved for the peak unit discharge as 

follows: 

qu = 10C0 + C1log(TC) + C2(log(TC))2    Eq. 4-14 

where C0, C1, and C2 are defined in Table 4-20 and TC = the time of concentration (hrs). 

 
For the use in small watersheds, the time of concentration calculation based on 

the lag equation was converted to hours and then simplified for each soil group through 

the substitution of the equation for watershed length and the curve number as follows: 

Tc = C4 * A 0.48 * S -0.5    Eq. 4-15 
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where TC = time of concentration (hrs),  A = watershed area (mi2), S = slope (ft/ft), and 

C4 is dependent on soil group and defined in Table 4-22.  The simplifications and 

conversions of the time of concentration equation are shown in Appendix B. 

Table 4-22. Soil Group Specific Values for C4 in Time of Concentration 
Calculations. 

Soil Group C4 
A 7.9199 
B 4.4884 
C 3.1773 
D 2.6592 

 

 
The total runoff (Q) can be simplified through the substitution of the curve 

number for the variable S as follows: 

6

2
5 )(

CP

CP
Q

    Eq. 4-16 

where P equals the 24-hr precipitation depth (in.) and C5 and C6 are shown in Table 4-23. 

Table 4-23. Coefficient Values for Total Runoff Simplification. 

Soil Group C5 C6 
A 3.13 12.51 
B 1.28 5.11 
C 0.70 2.81 
D 0.50 2.00 

 

 
Therefore, the final equation for the peak discharge is as follows: 

qp  = 10C0 + C1log(TC) + C2(log(TC))2*A*    Eq. 4-17 
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withTc = C4 * A0.48 * S -0.5 for small watersheds and based on hydraulic geometry 

relationships defined by Eqs. 4-11 and 4-12; A = area (mi2), S = slope (ft/ft), P = 24-hr 

precipitation (in.), and the coefficients are previously provided.  The equation inputs now 

include only the 24-hr precipitation depth (which is solved for through the climate change 

adjustment), the watershed area, the watershed slope, and the soil group of the study 

location. 

4.5 Urbanization Adjustment Factor Development 
The final component in the adjustment process was to develop a method for the 

urbanization adjustment of both peak discharge events output by the NRCS method.  The 

peak discharge adjustment method provided by Moglen and Shivers (2006) and discussed 

in Chapter 2 was selected.  Moglen and Shivers (2006) provided seven models varying in 

both complexity and the input variables.  For this study, the Population Density 

Distribution and Impervious Distribution Models were selected, as they both 

outperformed the other five models in regards to prediction accuracy and consisted of 

rational parameter trends.  Both models require the input of a rural peak discharge, an 

urbanization indicator (i.e., percent impervious area or population density), and a 

measure of the difference between the 10th and 90th percentiles of this indicator within the 

watershed.  Therefore, the final model selection will be determined by the user based on 

the ease of data collection for the study region.   

The model form for each distribution model is as follows: 

T

T

T

T

T

T C

C

C

C

CR

C

T
U UUQ

C
Q ,2

,4

,2

,3

,2

,2

)001.0(*)001.0(**
1 1

1

,1

 Eq. 4-18 



www.manaraa.com

where Qu = urban peak discharge (cfs), QR = rural peak discharge (cfs), U = urbanization 

indicator, either impervious area (%) or population density (thousands of people per 

square mile), and U = the difference between the 10th and 90th percentiles of the 

urbanization indicator within the watershed. 

The coefficients provided by Moglen and Shivers (2006) for each model are based 

on the return period of each event.  Therefore, the model coefficients will differ for each 

peak discharge record, as each record corresponds to a different return period.  Therefore, 

‘n’ sets of USGS coefficients must be calculated based on each of the ‘n’ return periods.  

Moglen and Shivers (2006) provide coefficient values for the 2-yr, 5-yr, 10-yr, 25-yr, 50-

yr, 100-yr, and 500-yr return periods.  Therefore, it was necessary to fit a model to the 

coefficients as a function of return period in order to make the approach applicable to 

every return period and, therefore, every peak discharge record in a time series.  The 

coefficients for the urbanization adjustment component for the impervious and the 

population density distribution models based on Moglen and Shivers (2006) as a function 

of return period are shown in Table 4-24 and 4-25, respectively, along with the 

coefficient of determination.   

Table 4-24. Urban Peak Discharge Equation Coefficient Values for the Impervious 
Distribution Model as a Function of Return Period (T). 

Coefficient Value R^2 
C1 y = 0.437T^-0.0649 0.9967 
C2 1.1 NA 
C3 y = 0.3036x^T-0.4415 0.8614 
C4 y = 0.0259T^0.1994 0.9702 
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Table 4-25. Urban Peak Discharge Equation Coefficient Values for the Population 
Density Distribution Model as a Function of Return Period (T). 

Coefficient Value R^2 

C1 0.2831*T 0.0307 0.9993 
C2 1.1 NA 
C3  0.1670*T -0.0079 0.9985 
C4 0.0628*T 0.0961 0.9935 

 
4.6 Summary of Adjustment Factor Development 

This new adjustment method is a combination of both theoretical and empirical 

analyses.  It is based on a climate indicator (i.e., precipitation and the driving force, GHG 

emissions), a hydrologic indicator (i.e., peak discharge), and an urbanization indicator 

(i.e., percent impervious area or population density) as inputs.  The method is as accurate 

as the GCM outputs, NRCS method, and USGS method can be.  Also, the input 

requirements are minimal and available through USGS, NOAA, and census data or GIS 

maps.  The new adjustment factor method reflects the change in peak discharge based on 

both urbanization and climate change. 

4.7 Application of Adjustment Factor 
 

With the adjustment method for nonstationarity developed, the next step was to 

apply the method and adjust a peak discharge series to design year climate change and 

urbanization conditions.  The application of the adjustment factor, which includes the 

location selection, input data retrieval, scenario development, and adjustment of peak 

discharge records, will be discussed herein. 

4.7.1 Selection of Location 
 
 The first step in the application of the adjustment method was to select a study 

location within the MD-VA-DE region for which the adjustment method was developed.  
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The most important criteria for the study location were that the rain and discharge gauges 

within the location were no more than a reasonable distance apart and the precipitation 

and discharge records provided 50 or more overlapping years of data.  Additionally, daily 

precipitation was required in order to extract each 24-hr precipitation event that coincided 

with the recorded peak discharge event.   

 Based on these criteria, the watershed outlet located at Guilford, Maryland, was 

selected along with the rain gauge in Laurel, Maryland.  The rain gauge is identified by 

NOAA as COOPID 185111 and located at the coordinates 39°05'N and 76°54'W.  The 

watershed outlet is identified as USGS gauge 01593500 Little Patuxent River at Guilford, 

Maryland, and located at the coordinates 39°10'03.9"N and 76°51'04.5"W.  The distance 

between the rain and discharge gauge is 6.4 miles.  The records consisted of 64 years in 

which both daily rainfall and peak discharge data were available. 

 The Guilford, Maryland, discharge gauge is located in Howard County, Maryland, 

on the Little Patuxent River, which is a tributary to the Patuxent River and, therefore, the 

Chesapeake Bay.  Figure 4-49 shows the delineated watershed as well as the stream 

network within Howard County and the watershed.  The drainage area equals 38 square 

miles.  The Guilford watershed is a subwatershed within the Little Patuxent River 

Watershed, which is 51 square miles and is made up of a variety of land uses including 

residential, parks, open space, institutional, commercial, industrial, and agricultural 

(Morales and Saltzman 2002).   
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Figure 4-49. Stream Networks within Howard County and Guilford Watershed. 

 

4.7.2 Adjustment Method Inputs 
 

Application of the adjustment factor requires retrieval of the following data for 

the selected study location:  

 Time series of annual peak discharge(cfs) over time period, Qp 

 Vector of return periods associated with peak discharge events based on 

the Log Pearson III distribution (T); 

 Time series of 24-hour rainfall depth (in.) associated with each annual 

peak discharge, P; 
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 Urbanization indicator over time period (i.e., impervious area or 

population density), U; 

 Area (A) (mi2) of the watershed. 

The annual peak discharge data for stream gauges are available online through USGS.  

Likewise, the area of the watershed is available through USGS.  The rainfall data for 

gauges are available through NOAA.  The population density can be retrieved through 

GeoLytics (2003) or 2000 census data is provided by www.esri.com.  Data can also be 

retrieved through state planning websites and census reports.  The urbanization and 

climate change indicators would ideally span the length of the discharge and rainfall data.  

Missing values should be interpolated in a manner that best fits the data. 

 
The precipitation and discharge data were retrieved first to ensure that despite the 

distance between the gauges, the data records were correlated.  The annual peak 

discharge was retrieved from the USGS gauge01593500 Little Patuxent River at 

Guilford, Maryland.  Daily precipitation data were retrieved from the NOAA rain gauge 

COOPID 185111 in Laurel, Maryland.  Next, the date on which each annual peak 

discharge occurred was stored and the corresponding 24-hr precipitation event was 

retrieved.  The peak discharge and corresponding precipitation records are shown in 

Figure 4-50.   
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Figure 4-50. Annual Max Peak Discharge and Precipitation based on Precipitation 
Occurring on Day of Peak for Guilford, Maryland. 

The coefficient of determination equaled 0.14, which suggests that 14percent of 

the variation in the peak discharge data is explained by the precipitation data.  However, 

it is apparent that a few peak discharge events correspond to zero precipitation.  This 

suggested that precipitation from preceding days may have caused the peak discharge 

event.  Therefore, the 24-hr precipitation was retrieved both on the day of each peak 

discharge event and the day before each peak discharge event.  The maximum 

precipitation depth between these two days was then stored and plotted versus the peak 

discharge event.  An additional analysis was conducted to include the precipitation depth 

two days before the peak discharge event as well.  The results for both analyses are 

shown in Figures 4-51 and 4-52.  It is apparent from the graphs that include preceding 

day in the analysis eliminates the issue in which peak discharge events correspond to zero 

precipitation events.  The coefficient of determination for the analysis that consisted of 

the day of the peak and the day before the peak equaled 0.19, which suggests that 19 

percent of the variation in the peak discharge data is explained by the corresponding 
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precipitation data.  The coefficient of determination for the analysis that added 

precipitation from two days before the peak equaled 0.20which suggests that 20 percent 

of the variation in the peak discharge data is explained by the corresponding precipitation 

data.  The two-day analysis provides the greatest coefficient of determination.  Therefore, 

the precipitation data based on two-day analysis was selected for the analysis.  All of 

these have statistical rejection probabilities smaller than 0.0005, which indicate they are 

statistically significant. 

Figure 4-51. Annual Max Peak Discharge and Precipitation based on Maximum 
Precipitation Occurring within One Day Before or Day of Peak for Guilford, 

Maryland. 
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Figure 4-52. Annual Max Peak Discharge and Precipitation based on Maximum 
Precipitation Occurring within Two Days Before or Day of Peak for Guilford, 

Maryland. 

4.7.2.2 Inputs for Urbanization Adjustment Component. 
As previously explained in Section 4.5, the USGS equations developed to adjust 

rural peak discharge values to urbanized peak discharge values require either a 

measurement of urbanization or population density within the watershed.  For this study, 

the population density input was selected based on data availability.  The necessary input 

values include the average population density for the watershed as well as the difference 

in the population density between the 10th and 90th percentiles of the distribution of 

population density in the watershed.  These input values were calculated for the year 

2000 in GIS and based on census data retrieved from www.esri.com.  

4.7.2.2.1 Calculation of Population Density Variable 
To calculate population density within the watershed, the census tracts and census 

data from the 2000 census for Howard County, Maryland, were retrieved from 

www.esri.com.  Then, the delineated watershed at Guilford, Maryland, and the Howard 
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County Census tracts are shown in Figure 4-53.  The census tracts within the watershed 

were extracted as shown in Figure 4-54.  This provided the necessary information to 

calculate the mean population density and difference between the 10th and 90th percentiles 

within the study watershed. 

Figure 4-53. Guilford Watershed Overlaying Howard County Population Density 
Map (1000 people/square mile). 
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Figure 4-54. Population Density (1000 people/ mi2) within Guilford Watershed in 
Howard County. 

 The mean population density was calculated through the spatial mean equation as 

follows: 

Spatial Mean =     Eq. 4-19 

where n = the total number of census tracts in the watershed; i = specifies the census 

tract; Ai = area allocated to census tract ‘i’; and PDi = population density within census 

tract ‘i'.  The average population density within the Guilford watershed equaled 2.33 

(1000 people/sq. mi). 

 Next, the difference between the 10th and 90th percentiles of the distribution of 

population density within the watershed was calculated.  The population density for each 

census tract was plotted against fraction of the total area within the watershed, shown in 

Figure 4-55.  The 10th and 90th percentiles from this graph were calculated.  The final 
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inputs into the urbanization adjustment component for the conditions in the year 2000 are 

shown in Table 4-26. 

Figure 4-55. Distribution of population density as a fraction of the total watershed 
area for U.S. Geological Survey Streamgage1593500, Patuxent River at Guilford, 

Maryland. 

Table 4-26. Population Density Statistics for USGS Equations for 2000 Census Data 
for Guilford Watershed in Howard County. 

90th Percentile 0.27 
10th Percentile 4.98 

Average Pop. Dens 2.33 
 

 The inputs were developed for the year 2000; however, to conduct a complete 

analysis, urbanization criteria must be developed from the start year of the peak discharge 

record to the final design year of interest.  For this study, the year 2100 was selected as 

the final design year.  Census data are not available through www.esri.com for years 

other than 1990 and 2000; however, the Maryland Department of Planning provides total 

population values for Howard County from 1970 to 2000 and projections of the total 



www.manaraa.com

population from 2005 to 2040 (Maryland 2009).  Additionally, the total population for 

Howard County in 1950 and 1960 were retrieved from the 1960 Census (US Department 

1961) and 1930 and 1940 from the 1940 Census (Treusdell 1942).   

The assumption was made that the ratio of population density to total population 

in 2000 would be consistent throughout the 20th and 21st century.  Therefore, this ratio 

was multiplied by the total population recorded or projected within each decade from 

1930 to 2040 to estimate the population density during the respective decade.  The results 

are shown in Figure 4-56.  The same method was repeated to estimate the 10th and 90th 

percentiles of the distribution of population density as a fraction of the total watershed 

area.  The results are shown in Table 4-27. 

Figure 4-56. Population Density Based on the Total Population Observed from 1930 
to 2000 (Shown in Blue) and Projected from 2005 to 2040 (Shown in Red). 

 

Table 4-27. Total Population and Estimated Population Density, 10th, and 90th 
Percentile based on the Observed 2000 Values for Howard County. 

Year 
Howard 
County 

Average 
Pop. Dens 

10th 
Percentile 

90th 
Percentile 
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Year 
Howard 
County 

Average 
Pop. Dens 

10th 
Percentile 

90th 
Percentile 

1930 16,169 0.15 0.33 0.02 
1940 17,175 0.16 0.35 0.02 
1950 23,174 0.22 0.47 0.03 
1960 36,152 0.34 0.73 0.04 
1970 62,394 0.59 1.25 0.07 
1980 118,572 1.11 2.38 0.13 
1990 187,328 1.76 3.77 0.21 
2000 247,842 2.33 4.98 0.27 
2005 267,200 2.51 5.37 0.29 
2010 285,600 2.68 5.74 0.32 
2015 298,800 2.81 6.01 0.33 
2020 312,200 2.94 6.28 0.34 
2025 321,200 3.02 6.46 0.35 
2030 328,200 3.09 6.60 0.36 
2035 332,800 3.13 6.69 0.37 
2040 336,800 3.17 6.77 0.37 

 

4.7.2.2.2 Statistical Models for Population Density 
 

Functions were then fitted to the population density and the difference between 

the 10th and 90th percentile data sets in order retrieve values for any year within the time 

series.  The functions were then extrapolated to the year 2100.  A composite model based 

on the following functional form was fitted to the population density data set: 

PD = C1 + C2*x + C3*x2  for x<=XC Eq. 4-20 

PD = C5 + C6*(1- )  for x>XC Eq. 4-21 

where PD = population density (1000 people/square mile); x = year – 1920; Xc equals 82; 

C1, C2,C3, and C4 are defined in Table 4-28; and C6 and C5 are defined based on the 

following equations: 

C6 =     Eq. 4-22 
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C5 = C1 + C2*Xc + C3*Xc

2 - C6*(1- )   Eq. 4-23. 

The coefficients C5 and C6 are used to provide continuity of magnitude and slope of the 

two functions (Eq. 4-20 and 4-21) at the intersection time XC.  A composite model was 

selected with the intention to develop a second urbanization scenario for comparison.  

This would require identical models in the twentieth century for both models to ensure an 

accurate comparison of the changes in the twenty-first century relative to the urbanization 

in the twentieth century.   

 

Table 4-28. Calibrated Coefficient Values for the Population Density Scenario 1 
Function. 

C1 0.1 
C2 -0.00695 
C3 0.000425 
C4 0.075 
Xc 82 

 

The fitted population density function for Scenario 1 is shown in Figure 4-57.  

The goodness-of-fit statistics are shown in Table 4-29.  The ratio of the standard error to 

the standard deviation equaled 0.087, which suggests that the model is a significant 

improvement over the mean for data predictions.  The coefficient of determination 

equaled 0.995, which suggests that 99.5% of the variation in the data is explained by the 

model.  The relative bias is positive and near zero.  The slightly positive bias is the result 

of the high level of curvature in the data set.   

To demonstrate the effect of nonstationarity due to urbanization, two projected 

scenarios were going to be used.  However, both sequences would use the same 
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twentieth-century data, as this data were known.  Therefore, the composite model was 

used to represent the data.  The composite model ensured that both scenarios would have 

an identical data for the twentieth century.  In order to satisfy the constraints required for 

the composite model and provide the level of curvature in the data set, calibration of 

additional coefficients would be required.  This would increase the degrees of freedom 

and, therefore, lower the goodness-of-fit of the model given the small sample size of 

population density data.  The slight bias in the model was acceptable for a composite 

model that would ensure an accurate comparison between Scenario 1 and an additional 

population density scenario. 

Figure 4-57. Population Density within the Watershed over Time for Scenario 1. 

 

1920 1940 1960 1980 2000 2020 2040 2060 2080 2100
0

0.5

1

1.5

2

2.5

3

3.5

Time

P
o

p
u

la
tio

n
 D

en
si

ty
 (1

00
0/

sq
.m

i.)

 

 

Observed and Projected Values
Scenario 1



www.manaraa.com

 

Table 4-29. Goodness-of-Fit Statistics for Population Density Models for Scenario 1 
where Se = Standard Error of Estimate; Se/Sy = Standard Error Ratio; e = Mean 

Bias; e/y = Relative Bias; R2 = Coefficient of Determination. 

Data Set Se Se/Sy e e/y R2 
Population Density: 

Scenario 1 
0.106 0.087 0.046 0.024 0.995 

 

 A second population density scenario was then developed based on the model 

fitted to the Maryland State Planning projections.  The extrapolated value at the year 

2100 was calculated and then increased by 50%.  The same model form was then fitted so 

that the population density was 50% greater in the year 2100.  The calibrated values for 

coefficients C1, C2, C3, and C4 for Scenario 2 are defined in Table 4-30.  The final 

composite models for population density Scenarios 1 and 2 are shown in Figure 4-58. 

Table 4-30. Calibrated Coefficient Values for the Population Density Scenario 2 
Function. 

C1 0.1 
C2 -0.00695 
C3 0.000425 
C4 0.025 
Xc 82 
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Figure 4-58. Population Density within Watershed over Time for Scenarios 1 and 2. 

 Statistical models were fitted to the 10th and 90th percentiles of the population 

density within the watershed.  For Scenario 1, this data set was derived based on the ratio 

of the value in the year 2000 to the total population for each decade from 1930 to 2040, 

as shown in Table 4-27.  For Scenario 2, the difference between the 10th and 90th 

percentiles of the population density within the watershed is equivalent to Scenario 1 for 

the twentieth century.  The projections from 2000 to 2040 for Scenario 2 were 

determined based on the ratio between the difference in the percentiles in the year 2000 

and the population density in the year 2000.  This ratio was multiplied by the population 

density projected for Scenario 2 from the year 2000 to 2040 to project the respective 
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difference between the 10th and 90th percentiles of the population density within the 

watershed for these years.   

 The data sets were fitted to the same composite model used for the population 

density models and provided in Eqs. 4-20 and 4-21.  The fitted coefficients, C1, C2, C3, 

and C4, for Scenarios 1 and 2 are shown in Table 4-31.  The final models are shown in 

Figure 4-59 for Scenarios 1 and 2 and the goodness-of-fit statistics are shown in Table 4-

32.  The ratio between the standard error of estimate and standard deviation equaled 

0.115 and 0.089 for the Scenarios 1 and 2 models, respectively.  This suggests that the 

models provide very accurate representation of the actual data.  Likewise, the coefficient 

of determination equaled 0.959 and 0.921 for the models for Scenarios 1 and 2, 

respectively.  This suggests that 95.9% and 92.1% of the variation in the data were 

explained by the models for Scenarios 1 and 2, respectively.   

The relative bias for both models is positive but essentially zero.  The positive 

bias is apparent in Figure 4-59 as the model overestimates the data in the middle of the 

twentieth century and the beginning of the twenty-first century for the first scenario.  As 

with the population density models, this positive bias is due to the high degree of 

curvature within the data set.  In order to satisfy the constraints required for the 

composite model and provide the level of curvature in the data set, calibration of 

additional coefficients would be necessary for a model.  This would decrease the degrees 

of freedom and lower the goodness-of-fit of the model.  Therefore, it was determined that 

the small bias in the models was acceptable in order to provide a composite model that 

would ensure an accurate comparison between the results of the two scenarios. 
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Table 4-31. Calibrated Coefficient Values for Models of the Difference between the 
10th and 90th Percentiles of Population Density within the Watershed for Scenarios 

1 and 2. 

Coefficient 
Scenario 

1 
Scenario 

2 
C1 0.25 0.25 
C2 -0.009 -0.009 
C3 0.0008 0.0008 
C4 0.0745 0.025 
Xc 82 82 

 

Figure 4-59. Difference between the 10th and 90th Percentiles of Population Density 
within the Watershed over Timefor Scenarios 1 and 2. 
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Table 4-32. Goodness-of-Fit for Models of Difference between the 10th and 90th 
Percentiles of Population Density for Scenarios 1 and 2 where Se = Standard Error 

of Estimate; Se/Sy = Standard Error Ratio; e = Mean Bias; e/y = Relative Bias; R2 = 
Coefficient of Determination 

Data Set Se Se/Sy e e/y R2 

Difference in 
Percentiles: Scenario 1 

0.284 0.115 0.167 0.044 0.959 

Difference in 
Percentiles: Scenario 2 

0.259 0.089 0.099 0.024 0.921 

 
Two methods for the calculation of the time of concentration were proposed in 

Section 4.4.1.  The NRCS method was proposed for watersheds with a drainage area less 

than 2,000 acres.  The Guilford watershed has a drainage area equal to 39 square miles or 

roughly 25,000 acres.  Therefore, the method based on hydraulic geometry relationships 

was selected for the application to the Guilford watershed. 

 First, the watershed was divided into five sections based on the length of the main 

channel within the watershed.  The subwatersheds are shown in Figure 4-60.  Then, the 

length of the channel in each subwatershed as well as the drainage area of each 

subwatershed were calculated.  The bankfull discharge at the downstream point of each 

subwatershed was calculated based on Eq. 4-11.  Then, the travel velocity within the 

channel for each subwatershed was calculated based on Eq. 4-12.  Finally, the length was 

divided by the velocity of the channel within each subwatershed to calculate the travel 

time through each subwatershed.  The calculations are shown in Table 4-33.  The 

individual travel times were summed to determine the time of concentration of the 

watershed.  The time of concentration was estimated to be 26,777 seconds or 7.44 hours. 
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Figure 4-60. Subwatersheds for Time of Concentration Calculation for Flowpath. 

 

Table 4-33. Time of Concentration Calculations. 

Channel 
Section 

Contributin
g Area (mi2) 

Individual Flow 
Path Length 

(ft) 

Bankfull 
Discharge 

(cfs) 

Velocit
y 

(ft/sec) 

Travel 
Time (s) 

1 1.976 21972.57 91.46 2.54 8634.06 
2 7.083 21175.00 263.53 3.29 6434.54 
3 18.048 15085.76 572.25 3.97 3797.23 
4 27.616 15865.12 814.19 4.33 3665.60 
5 37.894 19584.06 1058.37 4.61 4245.57 
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Based on the available emissions scenarios and population density data, six 

scenarios were developed for adjustments of peak discharge records.  Three climate 

change scenarios have already been explained based on emissions scenarios and 

identified as SRES A2, A1B, and B1 (See Chapter 2 for more details).  Two urbanization 

scenarios were developed based on the rate of increase of population density within the 

watershed.  Table 4-34 shows the six combinations of the three climate change and two 

urbanization scenarios and the notation that will be used to refer to each scenario. 

Table 4-34. Analysis Scenarios. 

 Urbanization Scenario 
Climate Change Scenario 1 2 

A2 A2:1 A2:2 
A1B A1B:1 A1B:2 
B1 B1:1 B2:2 

 
4.7.4 Application of Climate Change Adjustment Method. 
 

Given the calculated input variables, the adjustment process of the observed peak 

discharge record can be applied.  The process requires the individual adjustment of each 

observed peak discharge.  The adjustment procedure can be conducted as two parts: (1) 

climate change and (2) urbanization.  Within the explanation of the adjustment method, 

the term observation year refers to the year in which the peak discharge event to be 

adjusted occurred and the term design year refers to the year to which the event is being 

adjusted.  The adjustment method can be applied for any design year from the present to 

the year 2100.  The design year is constrained only by the time period for which the 

adjustment method was developed, particularly for the climate change component.   
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As shown in the method development, the adjustment methods for climate change 

and urbanization are dependent on return period.  Therefore, the return period must be 

calculated for the observed peak discharge record based on the Weibull plotting position 

formula distribution.  The assumption was made that the return periods for the peak 

discharge record and the associated 24-hr rainfall record are the same.  Then, the 

adjustments based on climate change conditions are conducted. 

For the climate change component, the effect of climate change is modeled using 

the change in precipitation that would result due to an increase in the climate change 

indicator, the greenhouse gas emissions scenario.  Therefore, the each 24-hour rainfall 

record is adjusted based on the projected change in rainfall for the design year selected.  

The precipitation GEV distribution parameters based on the observation year emissions 

rates and the design year emissions rates are determined (See Section 4.3.5for further 

clarification).  Then, based on the return period of the record, the expected 24-hour 

rainfall event can be determined for the observation year as well as the design year.  The 

ratio of the expected 24-hr rainfall depth for the observation year and the design year is 

then multiplied by the actual observed rainfall depth (P1) to calculate the adjusted 24-

hour rainfall event for the design year (P2).  Therefore, two different 24-hour rainfall 

depths associated with the return period of interest exist: (1) the actual (P1) and (2) the 

projected based on climate change in the design year (P2).  This step is repeated for each 

24-hr precipitation record based on the respective return period. 

Next, each 24- hour rainfall depth, P1and P2, is converted to a peak discharge (cfs) 

based on natural conditions.  Each rainfall depth is individually input into the SCS 

method to calculate the resulting peak discharge, Qp (cfs): 
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Qp  = 10C0 + C1log(TC) + C2(log(TC))2*A*    Eq. 4-24 

where Tc = time of concentration (hours), A = area (mi2), P = 24-hr precipitation (in.), 

and the coefficients are provided in Section 4.4.1. Therefore, two natural condition peak 

discharge rates for the return period of interest are calculated: (1) the current climate 

condition (QP1) and (2) the future climate condition (QP2).  It is important to note that 

both peak discharge rates are for natural watershed conditions, not the actual or projected 

urbanized conditions of the watershed.  This ensures that the peak discharge rates for 

both climate conditions are applicable as input into the USGS urbanization adjustment 

component. 

 The USGS urbanization equations convert a peak discharge from a rural 

watershed to a peak discharge from the same watershed under urbanized conditions.  

Therefore, QP1 is adjusted to the observation year urbanization conditions and QP2 is 

adjusted to projected urbanization conditions for the design year based on the following 

equation (Moglen and Shivers 2006):  
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where ‘i' corresponds to either the observation year or design year, C1, C2, C3,, and C4,are 

the USGS coefficients previously calculated for each return period, T corresponds to the 

return period, ‘PD’ is the population density for the watershed, and ‘PD’ represents the 

difference in the population density between the 10th and 90th percentiles of the 

distribution of population density in the watershed.  The final adjustment factor is the 

quotient of the urbanized design year peak discharge, QP1, and the urbanized observed 
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year peak discharge, QP2.  This final adjustment factor is multiplied by the observed peak 

discharge value to determine the peak discharge adjusted for future climate change and 

urbanization conditions.  These steps are repeated for each recorded peak discharge value.   

4.8 Adjustment Results 
 

The observed peak discharge time series is shown in Figure 4-61 for the Guilford, 

Maryland, gauge.  The data range from 1940 to 2009.  Each observed peak discharge was 

adjusted to urbanization and climate change conditions for design years 2025, 2050, 

2075, and 2100 based on the six different scenarios developed: (1) Emissions Scenario 

A2 and Urbanization Scenario 1; (2) Emissions Scenario A2 and Urbanization Scenario 

2; (3) Emissions Scenario A1B and Urbanization Scenario 1; (4) Emissions Scenario 

A1B and Urbanization Scenario 2; (5) Emissions Scenario B1 and Urbanization Scenario 

1; (6) Emissions Scenario B1 and Urbanization Scenario 2.  The results of these 

adjustments will be discussed herein.   

Figure 4-61. Peak Discharge Time Series for Guilford, Maryland. 
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 The adjusted peak discharge data sets for the design year 2100 and Emissions 

Scenarios A2, A1B, and B1 are shown in Figures 4-62, 4-63, and 4-64, respectively.  

Each figure displays the corresponding observed values as well as the adjusted values for 

the respective climate change scenario and the urbanization scenarios 1 and 2.  The 

adjusted peak discharge data sets for design years 2025, 2050, and 2075 for each climate 

change scenario are shown in Figures 8-1 through8-9 in Appendix B. 

Figure 4-62. Observed and Adjusted Peak Discharge Records (cfs) for the A2 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2100. 
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Figure 4-63. Observed and Adjusted Peak Discharge Records (cfs) for the A1B 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2100. 

Figure 4-64. Observed and Adjusted Peak Discharge Records (cfs) for the B1 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2100. 

It is apparent from Figures 4-62, 4-63, and 4-64 that the difference in the effect of 

each urbanization scenario is small compared to the overall adjustment for each climate 

change and urbanization scenario.  A greater difference in the adjusted peak discharge 
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rates is apparent between the three emissions scenario.  As expected, the A1B emissions 

scenario results in the greatest adjustment in the peak discharge records followed by the 

A2 and B1 emissions scenarios.  This corresponds to the ranking of the moments 

calculated for the precipitation GEV parameters for each emissions scenario in Section 

4.3.7.  The GEV parameters for the A1B scenario resulted in the greatest rainfall depth 

regardless of the return period for the design years analyzed (See Figure 4-38), followed 

by the A2 and B1 scenarios.  Therefore, it is physically rational that the A1B scenario 

results in the greatest adjustments to the peak discharges, followed by the A2 and B1 

scenarios. 

 The percent increase between each observed peak discharge record and the 

corresponding adjusted peak discharge record for each emissions scenario and 

urbanization scenario was calculated.  The results for the design year 2100 are shown in 

Figures 4-65, 4-66, and 4-67.  The figures suggest that two factors influence the percent 

increase, the time at which the observed record occurred and the magnitude of the 

observed record.  The percentage of increase of the adjusted peak discharge values 

decreases as the data set progresses, or as the discharge records observed later in the time 

series are adjusted.  This is because the difference between the climate change and 

urbanization scenario is less between the observation year 2000 and design year 2100 

than the observation year 1940 and the design year 2100.  Therefore, peak discharge 

events that occurred earlier in the twentieth century will require greater adjustments, as 

expected.   

The second factor is the magnitude of the observed peak discharge event.  It is 

apparent from Figures 4-65, 4-66, and 4-67 that the greatest percent increase occurs for 
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the second value in the data record, or the year 1942.  The second data record value in the 

observed time series shown in Figure 4-61 is the minimum peak discharge value of the 

entire time series.  Likewise, the lowest percent increase is applied to the 31st data record 

or year 1972, which is corresponds to the largest observed peak discharge in the entire 

time series in Figure 4-61.While the magnitude of increase will be greater for the larger 

events, the percent increase relative to the observed value will be smaller.  Therefore, the 

level of adjustment is dependent on both the time at which the observed peak discharge 

occurred and the magnitude of the event. 

Figure 4-65. Percent Increase of the Observed Peak Discharge Records to the Year 
2100 for Emissions Scenario A2 and Urbanization Scenarios 1 and 2. 
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Figure 4-66. Percent Increase of the Observed Peak Discharge Records to the Year 
2100 for Emissions Scenario A1B and Urbanization Scenarios 1 and 2. 

 

Figure 4-67. Percent Increase of the Observed Peak Discharge Records to the Year 
2100 for Emissions Scenario B1 and Urbanization Scenarios 1 and 2. 

 The statistics of the percent increase of each peak discharge record for each 

emissions scenario, urbanization scenario, and design year are shown in Table 4-35. As 

expected, the average percent increase is the greatest for the A1B emissions scenario 
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followed by the A2 and B1 scenario regardless of the design year.  Likewise, 

urbanization scenario 2 results in a greater percent increase than the urbanization scenario 

1 regardless of the climate change scenario or design year.  The average percent increase 

ranges from 33.7% to 58.5% for the design year 2100 and 21.4% to 25.3% for the design 

year 2025 for the six scenarios.  The level of adjustment increases as the design year 

increases, which coincides with the expected increase in greenhouse gases and increased 

impervious area over time with the climate change and urbanization scenarios.   

Table 4-35. Statistics for Percent Change in Peak Discharge Values 
for Design Years 2025, 2050, 2075, and 2100. 

 

4.9 Analysis of the Flood Distribution Parameters over Time 
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 With the peak discharge record adjusted to urbanization and climate change 

conditions from design years 2010 to 2100, the next step was to calculate the Log 

Pearson 3 (LP3) parameters of each adjusted data record in each design year.  With the 

parameters calculated, a flood frequency analysis can be conducted for each design year 

and the peak discharge corresponding to a given return period can be determined for a 

selected design year.  To calculate the LP3 parameters, the logarithms of each discharge 

within each of the 92 adjusted design year data sets were calculated.  The LP3 parameters 

equaled the mean, standard deviation, and skew of each of the logarithm peak discharge 

data sets.  The LP3 parameters for each design year were then stored in a time series.  

Figures 4-68, 4-69, and 4-70 show the time series for the mean, standard deviation, and 

skew of the adjusted data records for each design year. 

Figure 4-68. The Temporal Change in Log Mean of Peak Discharge Rates over 
Time. 
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Figure 4-69. The Temporal Change in Log Standard Deviation of Peak Discharge 
Rates over Time. 

 

Figure 4-70. The Temporal Change in Log Skew of Peak Discharge Rates over 
Time. 



www.manaraa.com

4.9.1 Analysis of the Parameter Functions 
It is apparent from the figures that the mean of the logarithms of the peak 

discharge values increases over time regardless of the scenario.  This is expected based 

on the increases in the peak discharge records previously discussed.  However, the 

standard deviation of the logarithms slightly decreases with time.  The data sets for the 

design years 2025 and 2100 for the A2 emissions scenario and urbanization scenario 2 

were analyzed to study the cause of the decrease in the standard deviation.  The adjusted 

peak discharge for each design year in the normal space is shown in Figure 4-71 while 

the values in the log-space are shown in Figure 4-72.  In the normal space, the standard 

deviation equals 2097 and 2373 for the years 2025 and 2100, respectively.  However, in 

the log-space, the standard deviation equals 0.272 and 0.278 for the years 2025 and 2100, 

respectively.  It is apparent from Figures 4-71 and 4-72 that the standard deviation of the 

peak discharge values in normal space is increasing in the twenty-first century; however, 

in log-space, the spread between the larger values is compressed whereas the spread 

between the smaller values is not as greatly influenced.  Therefore, the standard deviation 

of the log space decreases over time.  This very slight decrease in the log-space standard 

deviation, however, is counteracted by the increase in the log-space mean of the data. 
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Figure 4-71. Adjusted Peak Discharge Records in Normal Space for Emissions 
Scenario A2 and Urbanization Scenario 2 for Design Years 2025 and 2100. 

Figure 4-72. Adjusted Peak Discharge Records in Log-Space for Emissions Scenario 
A2 and Urbanization Scenario 2 for Design Years 2025 and 2100. 
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In addition to the overall decreasing trend in the standard deviation of the 

logarithms in the twenty-first century, the A1B scenarios show a slight increase at the end 

of the twenty-first century.  Likewise, if the function fitted for the A2 scenario were 

extrapolated, an increase would occur as well.  The data was analyzed further in an 

attempt to explain this shift in the data trend.  The standard deviation of the peak 

discharge data in normal space was calculated for each scenario and plotted in Figure 4-

73 to analyze this trend.  It is apparent from Figure 4-73 that the normal space standard 

deviation is increasing for each scenario; however, the B1 scenario appears to be 

stabilizing around the year 2080 while the rate of increase of the standard deviation for 

the A1B and A2 scenarios appears to increase.  These trends coincide with the trends in 

the standard deviations of logarithms shown in Figure 4-69 in that the B1 scenarios are 

the only scenarios that appear to continue to decrease into the twenty-second century.  

This suggests that when the rate of increase of the standard deviation in the normal space 

reaches a certain threshold, the standard deviation of the logarithms begin to increase as 

well. 
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Figure 4-73. Standard Deviation of the Adjusted Peak Discharge Records in Normal 
Space over Time. 

In addition to the standard deviation, the skew parameter was analyzed further.  

The estimated skew value as function of time suggests a polynomial swing throughout 

the 21st century.  However, this is likely to be due to sampling variation.  As was 

determined in the development of the adjustment factor for precipitation data, estimation 

of the skew is difficult for small samples.  Likewise, for use in the LP3 distribution, the 

skew is rounded to the nearest tenth.  Therefore, the minor difference in skew that results 

from the adjusted data is not meaningful.  However, it is important that the models are 

not extrapolated beyond the time period specified for this study. 

4.9.2 Fitting Statistical Models to the LP3 Parameters 
 
 To estimate the LP3 parameters at a give design year, statistical models were 

fitted to each data set for each scenario.  Polynomial functions were used:  

Y = C0 + C1*x+ C2*x2 + C3*x3    Eq. 4-26 
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where the coefficient values for each moment equation and each climate change and 

urbanization scenario are given in Table 4-36.  The coefficient of determination for each 

model exceeded 0.99, which suggests that more than 99% of the variation in the LP3 

parameters is explained by the fitted models. 

Table 4-36. Coefficient Values and Coefficient of Determination for Statistical 
Models of Mean, Standard Deviation, and Skew of the Log of the Peak Discharge 

Values over Time. 

  Scenario Coefficient Value   

Moment 
Climate 
Change Urbanization C0 C1 C2 C3 R2 

M
ea

n 

A2 1 10.549 -0.008 0.0000022 0 1.00 
A2 2 3.721 -0.002 0.0000007 0 1.00 

A1B 1 12.057 -0.010 0.0000026 0 1.00 
A1B 2 5.253 -0.003 0.0000011 0 1.00 
B1 1 -4.869 0.007 -0.0000017 0 0.99 
B1 2 -11.631 0.014 -0.0000032 0 0.99 

St
an

da
rd

  
D

ev
ia

ti
on

 

A2 1 2.564 -0.002 0.0000005 0 1.00 
A2 2 3.102 -0.003 0.0000006 0 1.00 

A1B 1 -95.796 0.144 -0.0000720 0.000000012 1.00 
A1B 2 -92.408 0.139 -0.0000698 0.000000012 1.00 
B1 1 77.202 -0.114 0.0000566 -0.000000009 0.99 
B1 2 80.852 -0.119 0.0000590 -0.00000001 0.99 

Sk
ew

 

A2 1 368.640 -0.543 0.0002667 -0.000000044 1.00 
A2 2 356.509 -0.526 0.0002590 -0.000000042 1.00 

A1B 1 805.872 -1.197 0.0005928 -0.000000098 1.00 
A1B 2 793.232 -1.179 0.0005847 -0.000000097 1.00 
B1 1 -272.439 0.414 -0.0002093 0.000000035 0.99 
B1 2 -283.628 0.430 -0.0002163 0.000000036 0.99 

 

4.9.3 Multinonstationary Flood Frequency Analysis 
 

Based on the LP3 parameter models, flood frequency analyses were then 

conducted for each emissions scenario and urbanization scenario for the years 2010, 

2050, 2075, and 2100.  Figure 4-74 shows the results for the A1B emissions scenario and 
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urbanization scenario 2.  Figure 9-10 in Appendix C show the results for emissions 

scenario A1B and urbanization scenario 1; Figures 9-11 and 9-12 in Appendix C show 

results for emissions scenario A2 and urbanization scenarios 1 and 2, respectively; and 

Figures 9-13 and 9-14 in Appendix C show results for emissions scenario B1 and 

urbanization scenarios 1 and 2, respectively.  As expected, the flood frequency analysis 

shifts upwards over time under each scenario as a result of the effects of 

multinonstationarity. 

Figure 4-74. Flood Frequency Analysis for Emissions Scenario A2 and Urbanization 
Scenario 2 
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 The multinonstationary flood frequency analyses for each scenario were 

compared based on the 100-yr and 500-yr flood for design years 2050, 2075, and 2100.  

The values are given in Tables 4-37 and 4-38 for the three emissions scenarios and two 

urbanization scenarios for the 100-yr and 500-yr floods, respectively.  Figures 4-75 and 

4-76 show the 100-yr flood peak discharge rates for the urbanization scenario 1 and 2, 

respectively, as well as the 100-yr flood peak discharge based on the observed peak 

discharge.  Likewise, Figures 4-77 and 4-78 show the 500-yr flood peak discharge rates 

for urbanization scenarios 1 and 2, respectively, as well as the 500-yr flood peak 

discharge based on the observed peak discharge. 

The results show that regardless of the emissions or urbanization scenario, a flood 

frequency analysis based on the observed peak discharge records will underestimate the 

100-yr and 500-yr floods.  For each emissions scenario and design year, the urbanization 

scenario 2 results in a greater peak discharge than that from urbanization scenario 1.  For 

the design year 2100, the emissions scenario A1B results in the greatest 100-yr and 500-

yr flood, followed by the A2 and B1 emissions scenarios. These trends coincide with the 

adjustment results as well as the general trends of the GEV parameters for the three 

emissions scenarios and the fact that greater impervious areas will result in greater runoff. 

Exceptions to these trends exist, however, for the design years 2050 and 2075.  

The results suggest that the B1 emissions scenario will result in the greatest peak 

discharge for both the 100-yr and 500-yr flood in the year 2050.  Analysis of the 

moments shows that the standard deviation of the logarithms for the B1 emissions 

scenario is greater than the A1B and A2 emissions scenario for this design year.  As 

previously discussed, the standard deviation decreases over time in the log-space despite 
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an increase in the normal space for most scenarios and design years.  Therefore, despite 

the greater standard deviation in the normal space for the A1B and A2 scenario, the 

standard deviation in log-space is less than that of the B1 scenario.  If the individual 

scenarios are analyzed over time, the decrease in the standard deviation of the logarithms 

is counteracted by the greater increase in the mean logarithms.  However, when the A1B, 

A2, and B1 scenarios are compared in the same design year, the difference in the 

standard deviation in the logarithms may overpower that of the mean.  This results in a 

greater projected flood for the B1 scenario despite the greater moments in the normal 

space for the A1B and A2 scenarios.  However, for the year 2100, the 100-yr and 500-yr 

floods are greater for the A1B and A2 scenario than the B1 scenario.  This suggests that 

the difference in the means begins to counteract that of the standard deviation in the year 

2100 as the scenarios continue to diverge.   

Another exception occurs in the year 2075.  The A2 scenario results in a 500-yr 

flood that exceeds the A1B scenario.  Analysis of the moments shows that the magnitude 

of the skew for the A2 scenario is greater than that of the A1B scenario by roughly 0.003 

for the year 2075.  However, the LP3 distribution requires the skew to be rounded to the 

nearest tenth, which results in a difference in of 0.1, with the skew values of 1.0 and 0.9 

for the A1B and A2 scenarios, respectively.  Therefore, as the skew coefficient influences 

the tail of the extremes, this difference results in a greater 500-yr flood for the A2 

scenario.  It is important to note that both of these exceptions are the result of limitations 

of the application of the LP3 distribution for a flood frequency analysis and should be 

considered when conclusions are made based on these results.   
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Figure 4-75. 100-yr Fl
Urbanization Scenario
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Figure 4-76. 100-yr Fl
Urbanization Scenario

Figure 4-77. 500-yr Fl
Urbanization Scenario
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Figure 4-78.  500-yr Fl
Urbanization Scenario
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Table 4-39. Increase (%) from Observed to Adjusted 100-yr Flood Peak Discharge 
(cfs) for each Emissions Scenario and Urbanization Scenario for the Years 2050, 

2075, and 2100. 

  2100 2075 2050 

  
Urbanization 

Scenario 1 2 1 2 1 2 

E
m

is
si

on
s 

Sc
en

ar
io

 

A2 29.1 32.4 23.6 26.4 15.7 17.7 

A1B 36.3 39.9 25.0 27.9 18.6 20.7 

B1 25.8 29.0 20.6 23.4 19.0 21.8 
 
Table 4-40. Increase (%) from Observed to Adjusted 500-yr Flood Peak Discharge 
(cfs) for each Emissions Scenario and Urbanization Scenario for the Years 2050, 

2075, and 2100. 

Skew based on Moment 
Equations 2100 2075 2050 

  
Urbanization 

Scenario 1 2 1 2 1 2 

E
m
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A2 28.7 31.7 24.5 27.0 14.0 15.9 

A1B 34.0 37.1 22.7 25.2 17.0 18.9 

B1 28.4 31.4 20.3 22.8 19.4 21.4 
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5.1 Introduction 

While the term risk has many definitions, for the purpose of this study risk will be 

defined as a combination of the probability of occurrence and the consequences 

associated with an event (See Chapter 2).  A risk assessment was conducted based on the 

projected changes in the flood frequency analysis under nonstationary conditions.  The 

risk assessment approach followed the method used by the Interagency Performance 

Evaluation Task Force, established by the United States Army Corps of Engineers, in the 

analysis of the New Orleans and Southern Louisiana Hurricane Protection System 

following Hurricane Katrina (USACE 2009).  The FEMA HAZUS Flood Model for 

riverine flooding was used to define the hazard based on the developed flood frequency 

distributions and estimate the consequences of each event analyzed.  The program has 

three levels of complexity that vary based on the user inputs and the level of 

sophistication of the program outputs.  For this study, the simplest level was selected 

based on the availability of user inputs and the requirement of a means for comparison 

between risk under nonstationary conditions rather than an accurate estimate of the 

damage. 

5.2 Risk Assessment Methodology 
In the IPET risk assessment, risk is defined as the product of the vulnerability to 

the hazard and the consequences that would result.  The vulnerability to a hazard consists 

of three parts: (1) the probability of occurrence; (2) the identification of the hazard; and 

(3) the system performance.  The probability of occurrence is based on a frequency 

analysis.  Identification of the hazard can have multiple components.  For example, the 

hazards assessed for a hurricane include surge levels and wave levels (USACE 2009).  
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For floods, the HAZUS program defines the hazard components as flood depth and 

velocity.  The third component, system performance, refers to reliability of any hazard 

mitigation methods implemented under the conditions identified for the hazard.  A 

combination of these three components defines the vulnerability to a specific hazard 

(USACE 2009).   

5.2.1 Vulnerability to the Hazard 
For this study, the hazard was identified as the flood depth.  The inclusion of a 

velocity analysis in the hazard identification was not available for the HAZUS program 

for a Level 1 analysis.  Flood events with 1% and 0.2% probability of occurrence, i.e., 

100-yr and 500-yr return periods were analyzed for the Guilford watershed study.   

The 100-yr and 500-yr floods were analyzed based on three scenarios: (1) 

stationary conditions; (2) worst case scenario for the design year 2100 under 

nonstationary conditions; (3) best case scenario for the design year 2100 under 

nonstationary conditions.  The hazard for the stationary scenario was based on the flood 

frequency analysis derived from the observed peak discharge data.  The hazard for the 

worst case scenario was based on the frequency analysis for the A1B emissions scenario 

and the urbanization scenario 2, which resulted in the greatest 100-yr and 500-yr flood in 

the year 2100.  The best case scenario was based on the frequency analysis for the B1 

emissions scenario and the urbanization scenario 1.  While the A2 scenario resulted in the 

minimum peak discharge for the 500-yr flood, the B1 scenario resulted in the minimum 

peak discharge for the 100-yr flood for the year 2100.  The 100-yr flood for the A2 

emissions scenario is 2.4% greater than that of the B1 emissions scenario for the year 

2100, while the 500-yr flood for the B1 emissions scenario is only 0.2% greater than that 



www.manaraa.com

of the A2 emissions scenario.  Therefore, the emission scenario B1 and urbanization 

scenario 1 were selected as the best case scenario which will result in the least increase in 

the hazard for the design year 2100. 

The vulnerability of the study region to the hazard was analyzed for two 

conditions: (1) without the implementation of a mitigation system and (2) with the 

implementation of a mitigation system implemented.  The mitigation selected consisted 

of zoning laws to limit development in vulnerable areas.  Federal policies have attempted 

to decrease the vulnerability of areas through structural mitigation methods, such as 

levees, as well as safe building standards.  Likewise, the have attempted to minimize the 

losses that result from the residual risk through the National Flood Insurance Policy as 

well as disaster relief. As a result, development has increased in at risk areas.  Therefore, 

Burby (2006) argues that the most efficient way to mitigate losses is through the 

restriction of development in vulnerable areas by local governments.   

The mitigation system analyzed consisted of zoning laws that limited 

development within the 100-yr floodplain based on stationary conditions.  The conserved 

area will be referred to as the Special Protection Area (SPA).  Therefore, when the 

mitigation system is implemented, damage that occurs within the SPA due to flooding 

will be assessed based on the 2010 inventory, because the assumption is made that 

development does not increase following the implementation of the zoning laws.  

However, the damage that occurs outside of the SPA due to flooding was assessed based 

on the projected development for the scenario analyzed.  The performance of the system 

in the mitigation of risks was then compared to the risks associated without the 

implementation of a mitigation system. 
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5.2.2 Consequences 
The second part of the risk assessment is the evaluation of the consequences that 

result from the hazard.  This includes the potential loss of life and property damage 

(USACE 2009).  For Level 1, the HAZUS program estimates the consequences based on 

default data within the HAZUS program.  This includes the general building stock within 

the United States as well as national data for essential facilities such as police stations, 

high potential loss facilities such as stormwater management structures, transportation 

and lifeline systems, agriculture, vehicles, and demographics (FEMA 2009).  This 

information is available at the census block level for the flood model.   

HAZUS assesses both direct and indirect losses.  Direct losses included physical 

damage to the general building stock, essential and high potential loss facilities, lifelines 

such as transportation and utilities, vehicles, and agricultural.  The level of damage is 

estimated based on default data curves within the HAZUS program.  For example, for the 

assessment of damage to buildings within the study area, the damage curve provides 

estimates of the level of damage based on the different water depths.  The loss estimate is 

then calculated based on the expected replacement cost.  Other direct losses include 

induced damages from debris or the release of hazardous materials and direct social 

losses such as casualties and displaced households.  Indirect losses are defined as 

additional disruption to economic activity as a result of the direct damage incurred by the 

hazard. 

The consequences provided by HAZUS are based on the default inventory data 

for the year 2006 and census data for the year 2000.  Therefore, for the stationary 

scenario assessed, the HAZUS estimates for the consequences were assumed to be 
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representative of the 2010 conditions.  However, for the nonstationarity scenarios based 

on the design year 2100, the consequences estimated by HAZUS based on the new flood 

frequency analyses were adjusted based on the projected development conditions for the 

year 2100.  The application of the HAZUS program for each scenario as well as the 

adjustments of the estimated consequences for 2100 development conditions will be 

discussed herein. 

5.3 Application of Risk Assessment Methodology to the Guilford Watershed 
The risk assessment methodology was applied to the Guilford Watershed 

stationarity and nonstationarity scenarios using FEMA’s HAZUS model.  For level 1, the 

HAZUS program required the user to define the study region based on the state, county, 

census tract, or census block.  For this study, Howard County was selected for the study 

region, as the Guilford watershed of the Little Patuxent River is within Howard County.  

The program then retrieves inventory to be used in the damage assessment based on 

census data, building stock data, and agricultural products.  Then, the user must input a 

digital elevation model for the study region, available through USGS.  Prompted by the 

user, the program will delineate the stream networks within the study region based on the 

elevations.  Figure 5-1 shows the study area of Howard County, the elevation map, 

delineated stream networks, and Guilford Watershed. 
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Figure 5-1. Study Region of Howard County, Digital Elevation Map, Stream 
Networks within Study Region, and Guilford Watershed. 

5.3.1 Delineation of the Floodplain 
Next, the user must select the stream or channel to be studied.  The Little Patuxent 

River was selected from the headwaters to the Guilford discharge gauge monitored by 

USGS.  Then, the user must choose to analyze return periods stored in the program that 

correspond to peak discharge rates based on USGS equations for each return period or 

input peak discharge values manually.  The program then delineates the floodplains that 

would result from the selected flood event and provides estimates of the expected 

damage.  For this study, the peak discharge rates were input manually based on the flood 

frequency analysis and return period for each scenario.  This approach requires that peak 

discharge rates be input for each segment within the selected channel or stream for the 

analysis.  The segments are defined by the HAZUS program and are typically based on 
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locations where additional streams flow into the channel, which would suggest an abrupt 

change in the peak discharge from upstream values.  The analyses preceding this point 

are only conducted based on one study gauge from which discharge data was retrieved 

from USGS.  Therefore, it was necessary to adjust the estimated peak discharge for the 

study gauge for upstream points defined by the HAZUS program.   

A method was developed to estimate the upstream peak discharge rates as a 

function of the peak discharge both observed and adjusted at the Guilford gauge.  First, 

the subwatersheds were delineated for the downstream point of each segment of the 

channel.  The delineated watersheds are shown in Figure 5-2.  The area of each 

subwatershed was calculated and is shown in Table 5-1 as well as the coordinates of each 

subwatershed outlet.  

Figure 5-2. Subwatersheds based on HAZUS Defined Segments of the Little 
Patuxent River in the Guilford Watershed. 

 



www.manaraa.com

Table 5-1. Latitude and Longitude (Degrees) Coordinates of Outlet and Area of 
each Subwatershed within the Guilford Watershed. 

Subwatershed Longitude  Latitude 
Area (sq. 

mi.) 
1 76.851 39.269 7.711 
2 76.844 39.247 11.674 
3 76.847 39.240 22.625 
4 76.850 39.227 24.956 
5 76.853 39.212 28.255 
6 76.857 39.206 28.866 
7 76.852 39.180 35.959 

Guilford Watershed   39.246 
 

To estimate the peak discharge for the subwatersheds, regression equations 

developed by Dillow (1996) for ungauged watersheds in the state of Maryland were used.  

Dillow (1996) provided the following equation to estimate the 100-yr peak discharge for 

the Piedmont region based on drainage area and forest cover: 

q = 3,060*A0.557(F+10)-0.241    Eq. 5-1 

where q = peak discharge (cfs), A = area (square miles), and F = forest cover (%).  The 

ratio of this equation for the peak discharge at the Guilford outlet and the subwatershed 

outlet of interest was solved for the peak discharge at the subwatershed outlet of interest, 

which resulted in the following equation: 

Eq. 5-2 

Since actual forest cover areas were not available for each subarea over the period of 

record, the assumption was made that the percentage of forest cover within the 

subwatershed would be the same as the entire watershed.  This assumption seems 

reasonable since the coefficient in the forest cover terms is significantly less than that for 
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the area; therefore, forest cover is the input variable of lesser importance.  Therefore, the 

equation can be simplified as follows: 

  Eq. 5-3 

The peak discharge at each HAZUS defined segment within the Little Patuxent River can 

be estimated based on the area of the subwatershed, the area of the Guilford watershed, 

and the peak discharge at the Guilford streamgauge site.  Note that this equation is 

specific to the 100-yr return period.  Dillow (1996) provides additional equations with the 

same functional form for return periods that range from the 2-yr to the 500-yr.  In 

addition, this equation is specific to the Piedmont region of Maryland; however, Dillow 

(1996) provides equations for the for the Appalachian Plateaus and Alleghany Ridges 

Region, the Blue Ridge and Great Valley Region, the Western Coastal Plain Region, and 

the Eastern Coastal Plain Region.  The user can apply these equations with their own 

discretion if used outside of the Maryland region based on regional characteristics. 

This method was applied to each subwatershed for both the 100-yr and 500-yr 

floods in the Guilford Watershed.  The results are shown in Tables 5-2 and 5-3 for the 

100-yr and 500-yr floods, respectively.  These peak discharge values were manually input 

into the HAZUS program and the floodplains were delineated for each scenario and 

return periods analyzed.  The floodplain delineation defined the flood depth, or the 

hazard, at each location within the study region.  Then, a final analysis was conducted in 

which the HAZUS program assessed the consequences that would result from the defined 

hazard for each scenario.  The program then provided a global summary of the 
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consequences that would result from each hazard analyzed for this study based on the 

2010 default inventory provided by the program. 

Table 5-2. Estimated 100-yr Peak Discharge (cfs) for HAZARD Program Defined 
Subwatersheds within the Guilford Watershed. 

Watershed/ 
Subwatershed 

Nonstationarity: 
Worst Case 

Nonstationarity: Best 
Case 

Stationary 
Conditions 

Guilford 
Watershed 

14806 13314 10587 

1 5982 5379 4277 
2 7536 6777 5389 
3 10894 9796 7790 
4 11506 10346 8227 
5 12330 11087 8816 
6 12478 11220 8922 
7 14102 12681 10084 

 

Table 5-3. Estimated 500-yr Peak Discharge (cfs) for HAZARD Program Defined 
Subwatersheds within the Guilford Watershed. 

Watershed/ 
Subwatershed 

Nonstationarity: 
Worst Case 

Nonstationarity: Best 
Case 

Stationary 
Conditions 

Guilford 
Watershed 

27442 25703 20012 

1 11342 10623 8271 
2 14206 13306 10360 
3 20348 19059 14839 
4 21461 20101 15650 
5 22958 21503 16742 
6 23226 21754 16938 
7 26169 24511 19084 

 
5.3.2 Resulting Floodplains for Stationarity and Nonstationarity Scenarios 
  
 Figure 5-3, 5-4, and 5-5 show the floodplain that would result from a 500-yr 

return period calculated based on the assumption of stationarity, the best case 

nonstationarity scenario, and the worst case nonstationarity scenario, respectively.  

Figures 10-1, 10-2, and 10-3 in Appendix D show the 100-yr return periods for the three 
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scenarios.  The floodplains and flood depths represent the hazard upon which the 

consequences are assessed.    

Figure 5-3. 500-yr Return Period Floodplain for Stationary Scenario. 
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Figure 5-4. 500-yr Return Period Floodplain for Best Case Scenario in 2100. 

Figure 5-5. 500-yr Return Period Floodplain for Worst Case Scenario in 2100. 
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5.3.3 Adjustments of Consequences for the Design Year 2100 
 The consequences defined by the HAZUS program represent census data and 

general building stock data for the year 2006.  Therefore, it was necessary to adjust the 

consequences assessed for expected development for the year 2100.  As the watershed is 

further developed, the potential consequences will increase because more people and 

property will be located within the floodplains.  Therefore, estimates of the change in 

consequences from the present day estimates to the 2100 design year were needed.  

Characteristics of existing development within the watershed were analyzed as well as 

the projected changes in the population density for each scenario to determine realistic 

assumptions for future development. 

5.3.3.1 USACE National Economic Development Principles and Guidelines 
 The projections of consequences for the year 2100 were conducted based on the 

USACE National Economic Development Principles and Guidelines (USACE 2009b).  

The guidelines provide a systematic approach to estimate the benefits of urban flood 

damage projects.  The guidelines can be summarized into ten steps, in which steps 3 and 

5 aim to forecast the increased economic activity within the floodplain in order to 

demonstrate future benefits and costs of the proposed project.  For the use in this study, 

these steps will be followed to project the increase in consequences within the floodplain 

and the benefit of implementing a zoning system to mitigate risk. 

5.3.3.2 Demographic Projections for Study Region 
 Step 3 within the guidelines requires that the activities in the affected area be 

projected as follows: 
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“Base economic and demographic projections on the most recent available studies 

and include the following: population, personal income, recreation demand, and 

manufacturing employment and output” (USACE 2009b). 

For this study, the projected demographic increases are developed based on total 

population projections provided by Maryland State Planning and were discussed in 

Chapter 4.  Therefore, the demographic projections will be based on the projected 

increase in population density within Howard County, which is assumed to apply within 

the watershed. 

5.3.3.3 Conversion of Demographic Projections to Land Development 
 Step 4 within the guidelines requires that the potential land use within the affected 

area be estimated based on the demographic projections as follow: 

“Estimate potential land use within the affected area by converting demographic 

projections to acres. The conversion factors can normally be derived from 

published secondary sources, from agency studies of similar areas or from 

empirical and secondary data available in the affected area. The categories of 

potential land use need be only as detailed as necessary to reflect the incidence of 

the flood hazard and to establish the benefits derived from a plan” (USACE 

2009b). 

For this study, the conversion was based on the following model between population 

density and urbanization developed by Moglen and Shivers (2006) for the central region 

of Maryland to determine the change in impervious area: 

IA = 12.1935*(PD)0.5195    Eq. 5-4 
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where IA = impervious area (%) and PD = population density (1000 people).  The 

increase in population density projected in Section 4.7.2.2.1 from 2010 to 2100 was 

calculated for both urbanization scenarios included in this study and the change in 

impervious area was estimated based on equation 5-4.  The expected increase in the 

percentage of urbanized area is 7% and 22% for the best case and worst case scenarios, 

respectively. 

 These values represent the percent increase in impervious area within the 

watershed.  The guidelines specify the conversion of demographic data to landuse type.  

Therefore, the assumption was made that impervious area would correspond to either 

residential or commercial and industrial landuse types. 

5.3.3.4 Distribution of Land Development within Study Region 
 Step 5 in the guidelines requires that the changes in land use are allocated to the 

floodplain and non-floodplain areas.  The basic factors considered in this allocation are as 

follows: 

“Base the allocation on a comparison of the floodplain characteristics, the 

characteristics sought by potential occupants and the availability of sought-after 

characteristics in the nonfloodplain portions of the affected area” (USACE 

2009b). 

To approach this step, the land cover within the watershed was retrieved from USGS.  

Figure 5-6 shows the different land cover classifications provided by the NLCD 2001 

data set as well as the 100-yr floodplain based on stationary conditions.  The map 

suggests that urbanized and forested land covers are spatially distributed throughout the 

watershed and floodplain.  This suggests that development within and outside of the 
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floodplain is desired by the community.  It is important to note that the agricultural land 

use, however, is located mainly in the northern and western portion of the watershed, 

with little interaction with the floodplain.  Based on these observations, it was assumed 

that development within the watershed can be assumed to occur evenly distributed 

between the available areas within and outside of the floodplain.  Agricultural areas were 

not considered in the analysis, as it does not appear that they will be affected by flooding 

issues based on the scenarios in this study.   

The second component considered in Step 5 was the availability of land for 

development.  The NLCD data set defines the developed land based on four 

classifications: (1) open space; (2) low intensity; (3) moderate intensity; and (4) high 

intensity.  These classifications are based on the percent impervious area as follows: (1) 

open space corresponds to less than 20% impervious area; (2) low intensity corresponds 

to between 20-49% impervious area; (3) moderate intensity corresponds to 50-79% 

impervious area; and (4) high intensity corresponds to between 80-100% impervious 

area.  The developed open space classification refers to golf courses and other 

recreational sites while the moderate and high density development areas were assumed 

to be completely developed.  Therefore, it was assumed that increased impervious area 

and, therefore, development will occur only in the Low Intensity land cover 

classifications and result in a shift from low intensity to moderate intensity.   
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Figure 5-6. Landuse Types for the year 2001 within the Watershed and the 100-yr 
Floodplain based on Stationarity Conditions. 

 To determine the total area of impervious land that will increase based on the 

projected percent increases, the total impervious area within the watershed was estimated.  

As the land use data is provided in the form of a grid, the area will be referred to in terms 

of the number of cells or pixels.  Each cell represents an equal area of land.  First, the 
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total area associated with each of the four developed classifications was calculated.  Then 

the average impervious area was assumed to represent each classification.  For example, 

the total area classified as open space was assumed to consist of 10% impervious area; 

low intensity consisted of 35% impervious area; moderate intensity was assumed to 

consist of 65% impervious area; and high intensity was assumed to consist of 90% 

impervious area.  Therefore, the total impervious area was estimated to be 15,576 cells 

out of 100,009 cells total within the watershed.  Therefore, the watershed is 14.2% 

impervious area.  The results of these calculations are shown in Table 5-4. 

Table 5-4. Total Impervious Area within Watershed in Terms of Cell Count and 
Based on Description of Land cover Classification in Regards to Percent Impervious 

Area. 

Classification 
Area in 2010 
(Cell Count) 

Impervious Area in 
2010 (Cell Count) 

Open 36227 3623 
Low 19005 6652 

Moderate 6812 4428 
High 971 874 

Total for 4 Classifications 63015 15576 
 

The next step was to determine the relationship between the calculated increase in 

impervious area and the conversion of low intensity developed land cover area to 

moderate intensity land cover area.  The total percent impervious area is projected to 

increase by 7% and 22% for the best and worst case scenarios, respectively.  Therefore, 

in the best case scenario, the watershed will consist of 15.2% and 17.3% impervious area.  

For ease of calculation, it was assumed that each cell equals 1 m2.  Therefore, the total 

area of the watershed equaled 110009 m2.  For the best case scenario, the percent 

impervious area within the watershed increases by 7% to a total 15.2%.  This equals 
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16721.4 m2 within the watershed.  Therefore, for the best case scenario, an additional 

1145.4 m2 will be added to the watershed for the best case scenario.  For the worst case 

scenario, the percent impervious area will increase by 22% within the watershed, which 

equals 17.3% impervious area within the watershed or 19031.6 m2.  Therefore, 3455.6 m2 

of impervious area will be added to the watershed for the worst case scenario. 

As previously stated, increases in impervious area will only be added to low 

intensity land cover classifications and will result in a conversion of existing low 

intensity land cover cells to moderate intensity land cover cells.  The average percent 

impervious area for low and moderate intensity land cover equals 35% and 65%, 

respectively.  If each cell is 1 m2, it can be assumed that converting from 0.35 m2, which 

would be the impervious area within one low intensity land cover cell, to 0.65 m2, which 

would be the impervious area within one moderate intensity land cover cell, results in the 

addition of 0.3 m2 to the watershed.  Based on this value, it was assumed that for the 

worst case scenario, the addition of 3455.6 m2 of impervious area would result in the 

conversion of 11,519 low intensity cells to moderate intensity cells.  This represents 61% 

of the low intensity cells within the watershed.  Likewise, for the best case scenario, the 

addition of 1145.4 m2 of impervious area would result in the conversion 3818 low 

intensity cells to moderate intensity cells.  This represents 20% of the low intensity cells 

within the watershed.  

The assumption was made that the conversion of low intensity to moderate 

intensity development would be distributed evenly throughout the watershed.  Therefore, 

within every census block, the 20% and 61% of the area defined as low intensity 

development will be converted to moderate intensity development by 2100 for the best 
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case and worst case scenarios, respectively.  Additionally, a small portion of the 

floodplain exists outside of the watershed.  It was assumed that the same percentage of 

low intensity development within these census tracts would be converted to moderate 

intensity as well. 

To conduct this conversion, the census tracts reported by HAZUS as being 

affected by the largest flood in the analysis were analyzed.  The area of developed open 

space, low intensity, moderate intensity, and high intensity land cover were recorded.  

Then,  for each census block, the 20% and 61% of the low intensity area was converted to 

moderate intensity area for the best and worst case nonstationarity scenarios, 

respectively.  The results for each census block are shown in Tables 10-1 and 10-2 in 

Appendix D for the best and worst case nonstationarity scenarios, respectively. 

5.3.3.5 Conversion of Projected Change in Developed Land to Projected Increase in 
Consequences 

 The final step was to adjust the consequences based on the increased development 

within each census block.  The total economic loss and total number of people displaced 

was recorded for each individual census block.  For the total economic loss, the property 

associated with each land cover type was assumed to be related to the average percent 

impervious area for the land cover classification (i.e. open equals 10%, low equals 35%, 

moderate equals 65%, and high equals 90%).  Therefore, the increase in consequences 

was determined based on the assignment of weights to each land cover type.  Open space 

was assigned a weight of 1, low intensity was assigned a weight of 3.5, moderate 

intensity was assigned a weight of 6.5, and high intensity was assigned a weight of 9.  

Then, for each census block, the consequences were assumed to increase based on the 

following equation:  
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    Eq. 5-5 

where ‘i' refers to the land cover classification in the year 2100; ‘j’ refers to the land 

cover classification in the year 2010; W = weight assigned to the specified land cover 

classification; A = area of the census bloc.  Therefore, as the area of the moderate 

intensity area increases and the area of the low intensity area increases, the greater weight 

of the moderate intensity development will be multiplied by a greater area.  The result is 

an increase in consequences that corresponds to the increase in development.   

For the best case nonstationarity scenario, the population density within the study 

region is expected to increase by 11.8%.  For the worst case nonstationarity scenario, the 

population density is expected to increase by 67.5%.  It was assumed that the increase in 

population density would be evenly distributed throughout the study region.  Therefore, 

for the best and worst case nonstationarity scenarios, the estimated number of displaced 

people for the stationary 2010 scenario would increase by 11.8% and 67.5%, 

respectively. 

Tables 10-3 and 10-4 in Appendix D show the adjustments of the total building 

loss ($ millions) for each census block for the best case nonstationarity scenario and the 

100-yr and 500-yr floods, respectively.  Tables 10-5 and 10-6 in Appendix D show the 

adjustments of the total building loss ($ millions) for each census block for the worst case 

nonstationarity scenario and the 100-yr and 500-yr floods, respectively.  Tables 10-7 and 

10-8 in Appendix D show the adjustments of the total people displaced for each census 

block for the best case nonstationarity scenario and the 100-yr and 500-yr floods, 

respectively.  Tables 10-9 and 10-10in Appendix D show the adjustments of the total 
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people displaced for each census block for the worst case nonstationarity scenario and the 

100-yr and 500-yr floods, respectively. 

5.3.4 Results for Risk Assessment without Mitigation System 
 Figure 5-7 and 5-8 show the total economic loss ($ millions) and total number of 

people displaced, respectively, for each of the three scenarios analyzed and the 100-yr 

and 500-yr return periods.  Table 5-5 shows the total economic loss ($ millions) and total 

number of people displaced for each scenario and return period analyzed.  For the best 

case scenario, the total economic loss is projected to increase by 26.6% and 19.8% for the 

100-yr and 500-yr floods, respectively.  Likewise, the number of displaced people is 

projected to increase by 17.1% and 21.0% for the 100-yr and 500-yr floods, respectively.  

For the worst case scenario, the total economic loss is expected to increase by 55.2% and 

39.5% for the 100-yr and 500-yr, return periods.  The number of displaced people is 

expected to increase by 41.5% for both return periods.  Therefore, if nonstationary factors 

are not incorporated into a risk assessment, the potential consequences are 

underestimated considerably for both the best case and worst case nonstationary 

scenarios.   

Comparison of the increase in consequences as a result of nonstationarity 

provides insight into the sensitivity of the system to the nonstationary climate and 

urbanization factors.  For example, a 25.8% increase in the peak discharge was projected 

for the best case scenario 100-yr flood, which resulted in a 26.6% increase in the total 

economic loss.  Likewise, a 39.9% increase in the peak discharge projected for the worst 

case scenario resulted in a 55.2% increase in the total economic losses estimated.  For the 

500-yr flood, a 28.4% and 37.1% increase in the peak discharge was projected for the 
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floodplain.  This area will be referred to as the Special Protection Area (SPA), but is 

equivalent to the 100-yr floodplain based on the assumption of stationarity.  If this 

mitigation system were implemented, then the consequences within the Special 

Protection Area would remain the same as those estimated with the default HAZUS data 

for the year 2006 for the stationarity scenario.  However, for scenarios that resulted in a 

floodplain with area outside the SPA, the consequences outside the SPA would be 

assessed based on the adjusted consequences for 2100 development conditions and inside 

the SPA would be assessed based on the 2010 development conditions. 

5.3.5.1 Development of Depth-Damage Relationship 
 The expected damage within a floodplain is dependent on the depth of flooding 

that occurs.  The United States Army Corps of Engineers New Orleans District provides 

tabled values for the percent damage associated with specific depths of flooding for 

different types of residential and commercial buildings (GEC 2006).  HAZUS reported 

that in the study region, 92% of the building stock consisted of residential buildings.  

Therefore, the residential depth-damage was used to estimate the percentage of damage 

inside and outside the special protection area.  The two story residential building 

constructed on slab rather than piers was selected to represent the housing type in 

Howard County.  The depth-damage values are shown in Table 5-6 and Figure 5-9.   

 The percent damage values were provided for both short and long term flooding.  

The percent damage values varied by less than 2% for each depth between these two 

categories; therefore, depth-damage curve for short term flooding was selected for the 

purpose of this study, as long term flooding is not common in Maryland.  The following 

function was fit to the depth-damage data: 
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D = 5.5 + 22*d0.3     Eq. 5.6 

where d = depth of flooding (ft) and D equals the percent damage.  The model provides a 

near zero relative bias equal to 0.01.  The coefficient of determination equals 0.95, which 

implies that 95% of the variation is explained by the model.  The standard error ratio 

equals 0.32, which shows that the model provides a better prediction than the mean 

damage value.    

Table 5-6. Depth-Damage (%) Values from GEC (2006) for 2 Story Residential 
Building on Slab. 

Depth (ft) Short Long 
0 5.5 5.6 

0.5 18.1 18.5 
1 23.1 24.4 

1.5 23.8 25.2 
2 26.8 28.4 
3 29.0 30.7 
4 36.8 38.6 
5 39.4 40.8 
6 40.0 41.4 
7 40.3 41.7 
8 43.3 44.5 
9 52.5 54.2 
10 54.6 56.1 
11 55.4 57.1 
12 57.2 58.8 
13 59.2 60.7 
14 59.2 60.7 
15 59.3 60.8 
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Figure 5-9. Depth (ft) - Damage (%) Curve from GEC (2006) for Two Story 
Residential Building on Slab. 

5.3.5.2 Analysis of Flood Depths within Floodplain Areas Inside and Outside SPA 
 Because the depth-damage model is nonlinear and the flood depths are not 

uniformly distributed throughout the floodplain, it was necessary to analyze the flood 

depths both inside and outside the SPA for each floodplain and scenario.  For each 

scenario, the floodplain areas located within the SPA and outside the SPA were extracted 

from the entire floodplain and analyzed individually.  Figure 5-10 shows an example for 

the worst case scenario 500-yr flood in which the area within the SPA and outside the 

SPA has been differentiated.  Figures 10-4 through 10-7 in Appendix D provide figures 

for the additional scenarios and return periods.  Then, for each census block, the area of 

the floodplain within the SPA and the area of the floodplain outside of the SPA were 

retrieved. 
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Figure 5-10. Area Inside and Outside of SPA for Worst Case Scenario 500-yr Flood 

The flood depths within each portion of the total floodplain for each scenario 

were analyzed.  The mean and standard deviation of the flood depths within each 

floodplain are shown in Table 5-7.  The flood depths were retrieved for each scenario and 

the depth-damage model was used to estimate the proportion of the damage within each 

census block that occurred within the SPA and outside the SPA for each scenario.  The 

results are shown in Table 5-8.  As would be expected, the worst case scenario results in 

the greatest expected damage, followed by the best case. 
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Table 5-7. Statistical Characteristics of Flood Depths for each Scenario. 

Scenario Area Analyzed 
Mean Flood 

Depth Std. Dev. 

Best Case 100 

Entire 
Floodplain 7.24 4.47 

Within SPA 7.61 4.33 
Outside SPA 5.3 4.67 

Best Case 500 

Entire 
Floodplain 9.24 5.69 

Within SPA 10.86 5.1 
Outside SPA 5.53 5.2 

Worst Case 100 

Entire 
Floodplain 7.53 4.74 

Within SPA 8.14 4.53 
Outside SPA 4.97 4.71 

Worst Case 500 

Entire 
Floodplain 9.74 5.85 

Within SPA 11.31 5.18 
Outside SPA 6.09 5.74 

Observed 500 

Entire 
Floodplain 8.51 5.25 

Within SPA 9.47 4.8 
Outside SPA 1.33 3.5 

Observed 100 
(SPA) 

Entire 
Floodplain 6.91 4.76 

  

Table 5-8. Expected Percent Damage based on Simulated Flood Depths and Depth-
Damage Model for each Scenario and Return Period. 

    Expected Damage (%) 

Best Case 100 
Inside SPA 44.7 

Outside SPA 38.4 

Best Case 500 
Inside SPA 49.6 

Outside SPA 39 

Worst Case 100 
Inside SPA 45.6 

Outside SPA 37.8 

Worst Case 500 
Inside SPA 50.2 

Outside SPA 39.9 
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5.3.5.3 Method of Adjustment for Mitigation System 
 The developed depth-damage model and simulated flood depth distributions for 

each scenario were then used to determine the expected change in consequences with the 

implementation of the mitigation system or the Special Protection Area.  For each 

scenario and return period analyzed, the expected percent damages were calculated for 

the floodplain area within the SPA and the floodplain area outside the SPA based on 

Equation 5-7.  Then, the proportion of the consequences within each census block that 

would be estimated based on 2010 inventory and 2100 development conditions was 

determined based on the following equation: 

   Eq. 5-7 

where the indices 1 and 2 refer to either the floodplain area inside or outside the SPA, 

depending on which calculation is being conducted;  is the expected percent damage 

based on the flood depth distribution for the designated index; and A is the area for the 

designated index.To determine the proportion of the consequences that will be estimated 

based on the 2010 inventory, index 1 would equal the area of the floodplain within the 

SPA.  Likewise, to determine the proportion of the consequences that will be estimated 

based on the 2100 projected increase in inventory, index 1 would equal the area of the 

floodplain outside of the SPA.  This equation was applied to each census block, using the 

areas of each portion of the floodplain inside the census block.  The results are shown in 

Table 10-11 and 10-12 in Appendix D for the best case nonstationarity scenario and the 

100-yr and 500-yr flood, respectively, and Tables 10-13 and 10-14 the Appendix D for 

the worst case scenario and the 100-yr and 500-yr flood, respectively. 
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 The final step was to calculate the combined consequences that would occur both 

inside and outside of the SPA for each census block and for each scenario.  The 

calculated proportions shown in Tables 10-13 and 10-14in Appendix D were applied to 

the consequences provided by HAZUS for each scenario based on the building inventory 

and census data used for the 2010 conditions and the adjusted consequences for the 2100 

conditions for each census block based on the following equation: 

Total Consequences for Census Block = C1*F1 + C2*F2   Eq. 5-8 

where C1 = the consequences estimated for the census block based on the 2010 

conditions; F1 = the proportion of the consequences estimated to occur within the SPA; 

C2= the consequences adjusted for the census block based on the 2100 conditions; and F2 

= the proportion of the consequences estimated to occur outside the SPA.  The total 

consequences for each scenario with the mitigation system implemented equaled the sum 

of the total consequences for each census block. 

5.3.6 Results for Risk Assessment with Mitigation System 
 The estimated consequences with the implementation of the development zoning 

mitigation system are shown in Table 5-9.  It is apparent that the implementation of the 

special protection error reduces the consequences for both nonstationarity scenarios and 

return periods analyzed.  For the best case scenario, the total loss was reduced by 5.5% 

and 4.4% for the 100-yr and 500-yr flood, respectively.  Likewise, the number of people 

displaced was reduced by 6.0% and 5.1% for the 100-yr and 500-yr floods, respectively.  

For the worst case scenario, the total loss was reduced by 14.0% and 12.1% for the 100-

yr and 500-yr return periods.  The number of people displaced for the worst case scenario 

was reduced by 15.6% and 13.1%, respectively, for the 100-yr and 500-yr floods.    
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 While the consequences were reduced, it is clear that the consequences assessed 

for the stationary scenario continue to noticeably under predict the nonstationary 

scenarios.  The total loss for the best case scenario is still 16.4% and 12.7% greater than 

the stationary scenario for the 100-yr and 500-yr floods, respectively.  For the worst case 

scenario, the total loss is under estimated by 25.1% and 18.5% for the 100-yr and 500-yr 

floods, respectively.  The total number of people displaced is underestimated by 9.1% 

and 12.9% for the 100-yr and 500-yr floods, respectively, for the best case scenario, and 

16.3% and 18.6% for the 100-yr and 500-yr floods, respectively for the worst case 

scenario.  This is because the 100-yr floodplains for the nonstationary scenarios extend 

beyond the Special Protection Area determined based on stationary conditions for the 

100-yr flood.  Therefore, while the mitigation system reduces the consequences for the 

2100 design scenario, the implementation of a system that takes into account the 

changing 100-yr floodplain under nonstationary conditions would be more effective.   

Table 5-9. Estimated Consequences for each Scenario and Return Period 
With and Without a Mitigation System. 

    
Stationary 
Scenario Best Case Scenario Worst Case Scenario 

T Category   
Without 
System 

With 
System 

Without 
System 

With 
System 

100-yr 

Total Economic 
Loss ($ Millions) 

115 146 138 179 154 

Total People 
Displaced 

1881 2202 2070 2662 2248 

500-yr 

Total Economic 
Loss ($ Millions) 

172 206 197 240 211 

Total People 
Displaced 

2351 2844 2700 3326 2889 
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5.4 Discussion of Risk Assessment 
The method conducted in this study provides a multinonstationary approach to 

risk assessment.  While the results showed noticeable changes in the consequences 

associated with the design floods, it is apparent that the study region selected for this 

research consisted of a small watershed for such a detailed risk assessment.  The HAZUS 

program works on a census block basis.  Therefore, consequences are estimated based on 

the percentage of the hazard within the census block.  However, the approach used in this 

study can be replicated for larger watersheds where the risks may be greater and climate 

change and urbanization will have a more significant hydrologic effect.  In a larger 

watershed, the consequences will show a more significant change from the stationarity to 

the nonstationarity scenarios. 

Additionally, the topography within the region of study is fairly steep.  Therefore, 

the floodplain did not experience much change between the different scenarios, despite 

an increase in the peak discharges.  The result was an increase in flood depth rather than 

the floodplain area.  While this resulted in greater consequences based on the depth-

damage curve method applied within the HAZUS program, the mitigation system was not 

as effective as expected between nonstationarity and stationarity conditions.  However, in 

flatter areas and a larger watershed, the scenarios would most likely show a greater 

difference in floodplains and the zoning for the 100-yr floodplain would show a greater 

reduction in risk. 
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6 Conclusions and Recommendations 
6.1 Introduction 
 

Recent events and existing research suggest that nonstationary factors are 

influencing the characteristics of hydrologic data.  Studies have shown the effects of 

greenhouse gases on climate and, therefore, the hydrologic cycle.  Characteristics of 

precipitation data are expected to change throughout the 21st century, with the effects 

varying spatially.  Likewise, urbanization continues to influence the runoff characteristics 

within watersheds.  As land development occurs, infiltration capabilities within the 

watershed decreases, which results in more runoff.  As runoff is dependent on 

precipitation as well as land cover characteristics, future climate change and urbanization 

are expected to contribute to nonstationary characteristics of flood data. 

 Current policies and design methods for flood management are based on the 100-

yr flood derived from a flood frequency analysis.  The current method of conducting a 

flood frequency analysis, however, assumes stationarity.  Therefore, as climate change 

and urbanization continue to influence characteristics of hydrologic data, the 

effectiveness of existing methods will most likely diminish.  For example, a levee 

designed for a 100-yr storm based on observed data will most likely not perform as 

expected as the magnitude of the flood associated with the design return period increases 

with nonstationarity. 

 The goal of this study was to enhance the current state of knowledge related to the 

detection and modeling of nonstationarity in hydrologic processes.  This goal was 

achieved through the development of a statistical test to detect change points within a 

time series, the development and application of a method to adjust a flood frequency 
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series for future nonstationary conditions, and a procedure for the assessment of risks 

associated with nonstationary flood frequency series. 

 
It is important to note that the analyses conducted within this study contain 

uncertainties.  Uncertainties exist in each of the future urbanization and climate change 

scenarios developed for this study.  The IPCC states that the emissions scenarios adopted 

for use in research, designated as A2, A1B, and B1, are not assigned any probability of 

occurrence.  They were developed to provide a foundation upon which climate change 

studies could be compared and represent three potential ranges of future emission rates.  

Likewise, the projected changes in population density and, therefore, urbanization are 

based on projections by Maryland State Planning; however, a variety of other potential 

changes in urbanization could occur during the twenty-first century.  Therefore, the 

accuracy of any of these scenarios existing in the future would be difficult to assess.

In addition to uncertainties within the urbanization and climate change scenarios, 

uncertainties exist within the models used in this study.  GCMs are assessed based on 

their ability to reproduce observed twentieth century climate conditions; however, much 

uncertainty still exists in regards to the representation of physical processes within the 

models and, therefore, the accuracy of predicted future climate responses to greenhouse 

gas emissions and aerosols.  The approach developed within this study consisted of an 

adjustment method to reduce these uncertainties by incorporating the change in the 

simulated and projected data over time rather than the actual data values; however, 

uncertainties still exist in the magnitude of change predicted by the model.  Uncertainties 

also exist within the conversion from precipitation to runoff.  While the NRCS method is 
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a widely accepted hydrologic model, the method greatly simplifies the physical processes 

involved.  Finally, uncertainties are introduced in the risk assessment through the many 

assumptions included in the HAZUS model methodology.  Therefore, uncertainties exist 

within both the developed climate change and urbanization scenarios and the model 

components in this study. 

The uncertainties associated with the developed model can be reduced through 

further research.  As science advances, the ability of GCMs to predict precipitation events 

will improve.  Additionally, a comparison of existing GCMs will provide a greater 

insight into the variation of the precipitation projections between models and the optimal 

precipitation estimates to incorporate in the development of the climate change 

adjustment method.  The implementation of a more sophisticated rainfall-runoff model 

into the method will reduce the uncertainty introduced by both the NRCS method and 

Moglen and Shiver’s (2006) model.  The adjustment for different urbanization scenarios 

can be analyzed directly with the rainfall-runoff model.  The risk analysis can be 

conducted based on a higher level of risk assessment within the HAZUS model to 

provide additional information in regards to the consequences and the floodplain within 

the watershed analyzed; however, this requires additional inputs that may themselves be 

uncertain.  Each of these components will minimize the uncertainties within the 

developed model, however, the future climate change and urbanization scenarios will still 

remain unknown. 

The results from this study were not meant to be absolute predictions of future 

hydrologic or economic changes and, therefore, the associated risks.  Emphasis should be 

placed on the procedures developed to relate GCM model outputs to flood risk estimates.  
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The many uncertainties that exist within components in this developed method are 

apparent.  However, application of the developed approach will provide a better 

understanding of the sensitivity of a watershed to potential future climate change and 

urbanization conditions.  The findings from this study are meant to begin a discussion 

among engineers, scientists, and policy makers about the potential changes and the 

associated risks that nonstationarity may bring, and to provide a method that considers 

recent scientific observations to promote well-informed risk management decisions.   

6.3 Change Point Test 
 

The first objective was to develop a statistical test to aid in the detection of 

nonstationarity.  Many factors influence hydrologic data.  As these factors begin to affect 

the data at a given period in time, the statistical characteristics of the data may be altered 

and the time series will become nonstationary.  This will influence the frequency 

distribution and parameter values selected to represent the data.  It is important that 

scientists and engineers have a thorough understanding of the time at which these outside 

factors begin to significantly affect the measured data in order to provide statistical 

models of the data.   

Existing methods to detect a change point depend on the assumption that no more 

than one change point exists within the data (Reeves et al. 2007).  As previously 

discussed, the future will likely consist of multiple nonstationary factors that will 

influence hydrologic data.  Likewise, an individual factor, such as urbanization, may not 

continue to influence the time series for the entire duration following the initial effect.  

Therefore, to accurately assess the individual effects of these multiple factors and, 
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therefore, model hydrologic data based on potential future conditions, a method to detect 

multiple change points within a time series is needed. 

The breakpoint test developed in this study will aid in the detection of change 

points within a time series.  The theory behind the developed test is that change points 

within a time series will result in a change in the slope of sub-samples within the data.  

The slope of the data is directly related to the correlation coefficient between the flood 

magnitudes and time.  Therefore, if the correlation coefficients for different sub-samples 

within the entire time series are calculated and converted to Z-values through the Fisher’s 

‘Z’ transformation, the variance between the Z-values can be calculated.  The null 

hypothesis of equal slopes and, therefore, no significant change is most likely rejected at 

the times when the test statistic is maximum.  If the sub-samples are divided at the true 

but unknown change point locations, then the variance of the Z-values for the sub-

samples will be at a maximum value. 

New critical values were needed for the test statistic as the independent variable 

of the time series is not a random variable, i.e., time is an integer, uniformly distributed 

variable.  Critical values were developed and verified for the test statistic.  The test 

statistic was then verified using simulated data.  Analysis of the response surface of the 

calculated Z-values for varying sub-samples within a time series proved that the theory 

behind the test statistic holds for multiple change points.  These findings improve upon 

the existing change point tests that fail to identify more than one change point within a 

time series.  The developed statistical test will aid scientists and engineers in the 

identification of change points within hydrologic data in order to provide optimal 

modeling accuracy. 
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6.4 Nonstationarity Adjustment Method 
 

A method was developed to account for nonstationary conditions in a flood 

frequency series.  The method combines traditional statistical methods used in hydrology 

with both theoretical and empirical projections of future conditions.  The future 

conditions were based on two nonstationary factors: (1) climate change and (2) 

urbanization.   

The method required the development of three components: (1) the adjustment of 

a precipitation record for a selected climate change scenario; (2) the conversion of the 

precipitation data to a peak discharge value for the selected watershed; and (3) the 

adjustment of the resulting peak discharge value for future urbanization scenarios.  The 

climate change adjustment component was developed based on the expected change in 

the precipitation distribution.  The expected change was modeled on daily precipitation 

projections from a GCM for the twentieth and twenty-first century provided through the 

CMIP3 multi-model data set for three emissions scenarios.  The conversion from a 

precipitation depth to a peak discharge for a selected watershed was conducted based on 

the NRCS method.  The adjustment for urbanization scenarios was developed based on 

the USGS urbanization equations provided by Moglen and Shivers (2006). 

The method was then applied to the Guilford Watershed in Howard County, 

Maryland.  Three climate change emission rate scenarios were analyzed as well as two 

potential urbanization scenarios for the twenty-first century.  The observed peak 

discharge record for the Little Patuxent River in Guilford, Maryland, was adjusted to 

design years ranging from 2010 to 2100.  Stationary flood frequency analyses were then 

developed for the design years 2050, 2075, and 2100 to compare peak discharges 
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associated with selected return periods to those under the nonstationary conditions that 

would reflect a measured record. 

The results for the Guilford, Maryland analysis showed that for the 100-yr flood, 

failure to account for multinonstationarity will result in a noticeable underprediction of 

peak discharge rates.  Depending on the climate change and urbanization scenario, the 

100-yr flood was underestimated from 25.8% to 39.9% for the design year 2100 when the 

assumption of stationarity was incorrectly made.  Likewise, the 500-yr flood was 

underestimated from 28.4% to 37.1%, depending on the climate change and emissions 

scenario, for the 2100 design year when nonstationarity was not taken into account.  

These noticeable differences in peak discharge estimates prove the importance of 

accurately modeling nonstationarity for future flood mitigation.  The performance of 

flood structures designed based on assumed stationary conditions is likely to decline as 

nonstationarity increases the magnitude of the flood associated with a selected return 

period.   

6.5 Risk Assessment 
 
 The final component of the study consisted of a risk assessment using FEMA’s 

HAZUS program.  This risk assessment approach was based on the method used by the 

IPET in the analysis of the New Orleans and Southern Louisiana Hurricane Protection 

System following Hurricane Katrina (USACE 2009a).  The 100-yr and 500-yr floods 

were analyzed based on three scenarios: (1) stationarity; (2) best case nonstationarity; and 

(3) worst case nonstationarity.  The HAZUS program was used to define the hazard for 

each event, or the flood depth, and estimate the consequences that would results.  The 
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consequences associated with the 100-yr and 500-yr return period were then calculated 

and compared for the three scenarios.   

 In addition to the comparison of consequences associated with stationary and 

nonstationary conditions, the effectiveness of a mitigation system incorrectly designed 

with the assumption of stationarity was assessed.  The mitigation system consisted of 

zoning laws to prohibit further development within the 100-yr floodplain designed based 

on stationary conditions, referred to as the Special Protection Area.  The stationary 100-

yr flood was selected as the design criteria because it is the most common return period 

upon which flood mitigation systems and policies are based.  The reduction in 

consequences with the implementation of the mitigation system was then assessed. 

 The risk assessment was conducted for the design year 2100.  The results showed 

that, if nonstationarity is not accounted for, the consequences for the 100-yr and 500-yr 

flood will be noticeably underestimated.  For the 100-yr flood, the total building loss 

would be underestimated by 26.6% and 55.2% for the best case and worst case 

nonstationary scenarios, respectively, when nonstationarity was ignored.  For the 500-yr 

flood, the total building loss was underestimated by 19.8% and 39.5% for the best case 

and worst case nonstationary scenarios, respectively.  Likewise, the number of people 

displaced was underestimated by 17.1% and 21.0% for the 100-yr and 500-yr floods, 

respectively, for the best case scenario and41.5% for both the 100-yr and 500-yr floods 

for the worst case scenario when nonstationarity was ignored.  Therefore, if nonstationary 

factors are not incorporated into a risk assessment, the potential consequences will be 

very significant from the standpoint of public welfare and safety.   
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 The implementation of the mitigation system, in which development is prohibited 

within the Special Protection Area, proved to mitigate the consequences for each 

scenario.  However, the resulting consequences were still greater for the nonstationary 

scenario than for the stationary scenario because the floodplain extends beyond the 

Special Protection Area.  The results showed that the mitigation system reduced the total 

losses by 5.4% and 4.4% for the 100-yr and 500-yr flood, respectively, for the best case 

scenario and 14.0% and 12.1%, respectively, for the 100-yr and 500-yr return periods for 

the worst case scenario.  Likewise, the number of people displaced was reduced by 6.0% 

and 5.1% for the 100-yr and 500-yr floods, respectively, for the best case scenario and 

15.6% and 13.1%, respectively, for the 100-yr and 500-yr floods for the worst case 

scenario.   

While the system reduced the consequences, estimates made based on stationary 

conditions still greatly underestimated the consequences associated with each of the 

nonstationary conditions regardless of the implemented system.  The total loss for the 

best case scenario is still 16.4% and 12.7% greater than the stationary scenario for the 

100-yr and 500-yr floods, respectively.  For the worst case scenario, the total loss is 

underestimated by 25.1% and 18.5% for the 100-yr and 500-yr floods, respectively.  The 

total number of people displaced is underestimated by 9.1% and 12.9% for the 100-yr and 

500-yr floods, respectively, for the best case scenario, and 16.3% and 18.6% for the 100-

yr and 500-yr floods, respectively for the worst case scenario.  Therefore, unless 

nonstationarity is accounted for in the design of mitigation systems, the reduction in 

consequences will be greatly underestimated for future conditions.  
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 While risk assessment is practiced by many agencies, the application to compare 

multinonstationarity conditions has not been conducted.  The nonstationary application of 

a risk assessment shown in this study can be used to test the sensitivities of a community 

to a range of potential future climate change and urbanization scenarios.  As a result, 

stakeholders can make better informed decisions in regards to flood mitigation for an 

uncertain future. 

6.6 Conclusion 
 
 Through this research, methods to detect and model multinonstationarity in 

hydrologic data as well as to assess risks for a nonstationary future were developed.  A 

statistical method to detect change points was developed to improve the modeling of a 

multinonstationary time series.  A method to adjust measured flood series for the 

changing influences of urbanization and climate change to a state that reflects conditions 

over the design life of a project was both developed and applied.  Finally, a 

multinonstationary risk assessment method was demonstrated to show the effect of 

failing to account for nonstationarity.  These advancements in the state of the art will aid 

both engineers and policy makers in understanding and planning for nonstationary 

conditions in the future.     

Flood management designs and policies can be adapted based on the analysis of 

the sensitivities of a particular watershed to climate change and urbanization.  If estimates 

show that urbanization will cause a certain increase in risk, zoning laws can be 

implemented today rather than tomorrow to mitigate this risk.  If the sensitivity of 

flooding based on established emission rates can be determined, policy makers can 

attempt to control emissions to meet the set rates by the year 2100.  If the sensitivities of 
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the system are understood, the factors could potentially be controlled to mitigate the 

consequences.  While it may be difficult to predict the future, through methods such as 

those proposed in this study, the range of possibilities will be better understood to ensure 

that well informed decisions are being made to mitigate risks in a nonstationary 

environment. 

6.7 Future Research 
 
 While the results of this research greatly improve the current methods for the 

detection and modeling of nonstationarity as well as the assessment of the associated 

risks, future research is needed.  The proposed further research in regards to the 

developed change point test, adjustment method for nonstationarity, and nonstationary 

risk assessment will be discussed herein. 

 
In addition to a nonparametric test, the test developed within this study can be 

improved through the development of additional critical values.  This will improve the 

power of the statistical test in detecting change points within time series with high 

random variation.  The critical values of the test were sensitive to the correlation 

coefficients of the individual sub-samples created by potential change point locations.  

Likewise, the test can identify multiple locations for change points that provided 

statistically significant test statistics.  Therefore, determination of the distribution of the 

critical values would enable the rejection probabilities associated with each potential 

change point location rather than the critical values to be compared in order to best 

identify the change point locations. 
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Assessment of the constraints of the developed test would also be beneficial to 

ensure that the test is used appropriately.  As was discussed by Reeves et al. (2007), the 

power of statistical tests can decrease when applied to data that does not meet the criteria 

for the test.  It would be beneficial to understand the power of the developed change point 

test under specific data characteristics, such as the sample size and random variation, in 

order to better understand the likelihood of a type 2 error when applying the test to 

hydrologic data. 

In addition to further research in regards to the test statistic developed for this test, 

a nonparametric multi-change point test would be beneficial as well.  The change point 

detection test developed for this study assumes independent and normally distributed 

errors.  However, for extreme hydrologic data, this assumption does not apply.  

Therefore, development of a nonparametric change point detection to detect multiple 

change points would be a beneficial addition to the statistical detection of changes in 

hydrologic data due to nonstationarity.  

 
 Much future research can be conducted to improve both the method developed for 

nonstationarity and the application of the method.  For the climate change adjustment 

component, daily precipitation projections were analyzed from the CSIRO model for the 

twentieth and twenty-first centuries.  The CMIP3 provides projections for additional 

models as well; however, not all models provide daily projections.  As the field of 

climate science advances and daily precipitation projections become more available and 

reliable, it would be beneficial to apply this method to outputs from other climate models 

in order to provide a more complete analysis of the projected changes in precipitation.  
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Likewise, as advancements in GCMs continue, the ability of models to provide 

projections of extreme hydrologic data will improve and, therefore, increase the accuracy 

of the adjustments made with this method. 

Based on existing studies and methods, the GEV distribution was selected to 

represent precipitation and the LP3 distribution was selected to conduct the flood 

frequency analysis.  However, it would be beneficial to conduct a sensitivity analysis and 

determine the effect of the probability distribution on the adjustments in the peak 

discharge as well as the assessed risk.  Identification of the appropriate distribution to 

represent hydrologic data is important to ensure the most optimal projections for future 

conditions. 

The method developed in this study used the NRCS method to compute a peak 

discharge value from the adjusted rainfall.  However, more advanced rainfall-runoff 

models could be applied.  To increase the accuracy of the adjustments, a watershed 

specific rainfall-runoff model could be calibrated and applied.  This would improve the 

estimates of the peak discharge series from the adjusted precipitation depths.   

In addition to using a more complex rainfall-runoff model, consideration of 

factors such as antecedent moisture conditions when the rainfall is converted to runoff 

would greatly improve the model.  The developed method selects the 24-hr precipitation 

depth associated with the day of the annual maximum peak discharge event.  The 

assumption was made that the return periods of the computed peak discharge rate and the 

24-hr precipitation depth would be the same.  However, it is feasible that the 24-hr event 

does not represent the magnitude of the peak discharge event, but rather the antecedent 

moisture conditions due to previous wet days contributed to the increased runoff depth 
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and peak discharge.  If only the 24-hr precipitation depth is adjusted, it is likely that the 

adjustment of the observed peak discharge event will be underestimated.  Therefore, 

incorporating antecedent moisture conditions into the proposed method would improve 

the physical rationality of the calculated adjustment factors and, therefore, the resulting 

nonstationary flood frequency analyses and risk assessments. 

While the method developed in this study was based on data from the Maryland, 

Delaware, and Virginia region, the method could be calibrated for additional regions.  

The method can be developed for different climatic regions through the retrieval of 

projected precipitation data for the region of interest.  A region-specific adjustment factor 

can then be developed and applied based on the statistical characteristics of the 

precipitation distribution within that region.  For areas in the southwest, low flows could 

be analyzed rather than peak discharge records by assessing the changes in precipitation 

and adjusting existing low flow records.  Coastal flooding could also be analyzed and 

adjusted through a similar process.  The method is adaptable for other regions and 

hazards, as it is based on data available to the public and models that are widely accepted 

in hydrology.   

The projections provided through this method are subject to the uncertainties 

associated with the data inputs and the models developed and applied.  While it is not 

possible to accurately assess the uncertainties of future climate projections, assessment of 

the uncertainties of the statistical and hydrologic models applied would provide 

additional information in regards to the potential range of future flood frequency 

scenarios.  Uncertainties associated with the estimation of the GEV parameters for the 

precipitation distributions would provide greater insight into the range of potential 
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changes in precipitation based on each emissions scenario.  For this study, the maximum 

likelihood method was used; however, additional methods are available and should be 

compared to determine the optimal method of estimating the GEV parameters.  Likewise, 

a moving window method was applied to calculate the change in the parameters over 

time.  This method could be improved through a more detailed sensitivity analysis to 

determine the optimal sample size or window length to calculate each GEV parameter.   

 
 In this study, method developed was applied to a small watershed in Howard 

County using basic input data.  However, the accuracy of predictions could be improved 

if more accurate input data were available.  Urbanization data can be retrieved from 

satellite images to replace the use of population density as an urbanization indicator for 

the USGS equations.  Likewise, additional climate change and urbanization scenarios can 

be applied in order to provide a greater range of results and analyze the sensitivity of the 

system more thoroughly.  The nonstationary factors can also be analyzed individually to 

compare the sensitivity of a watershed to climate change compared to urbanization.  Each 

of these components would provide a more detailed analysis of the sensitivity of a 

watershed to multinonstationarity. 

 
 Risk assessment is an important component in the decision making for flood risk 

management.  While the risk assessment was meant to provide a preliminary assessment 

of the sensitivities of the community to nonstationarity, a more sophisticated approach 

would be beneficial of future research.  First, the HAZUS program can be applied at a 

more sophisticated level in order to assess the velocity hazard associated with flooding.  
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This would provide a more accurate assessment of the expected damage for a particular 

flood.  Additionally, the study area only consisted of the Little Patuxent River; however, 

the Guilford watershed consists of additional first-order streams that drain into the Little 

Patuxent.  Analysis of the consequences of nonstationarity in these additional streams 

would provide a more accurate assessment of the associated risks. 

Projections for the future economic development within the watershed were made 

based on existing land use data and projected increases in population density following 

the guidelines provided by USACE (2009b).  Then, the consequences based on the 

default inventory were adjusted accordingly for the nonstationary conditions in the design 

year 2010.  However, it is possible to manipulate the inventory within the HAZUS, which 

would provide a more objective assessment of the consequences based on the projections 

developed. 

Likewise, the application of this method to a larger watershed would provide the 

opportunity to analyze a more complicated mitigation system.  For this study, zoning 

laws were implemented in order to assess the effectiveness of mitigation systems 

designed based on the assumption of stationarity.  Additional systems, such as levees, can 

be analyzed within HAZUS to provide additional sensitivity analyses of communities and 

existing flood risk management methods to nonstationarity.   

The assessment of the consequences for additional design years and return periods 

would provide a more thorough understanding of the potential risks over the twenty-first 

century for a selected community.  The annualized risk can be calculated to provide 

policy makers with a cumulative risk estimate for a variety of potential floods.  Likewise, 

the assessment of risks for additional design years would provide a time series of the 
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change in risk for different climate change and urbanization scenarios.  It is important 

that risk be presented in a time span that will promote the optimal course of action in 

flood mitigation.  The design life of many flood management structures does not extend 

to the year 2100.  Therefore, providing an estimate of the change in risk over time will 

enable stakeholders to better understand how nonstationarity will affect communities in 

the near future. 
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7 Appendix A 
 
 The Kendall Tau test was adjusted in an attempt to develop a statistical test to 

detect multinonstationarity.  Two different approaches were attempted: (1) Systematically 

apply the Kendall Tau test to sub-samples within the data and determine the largest sum 

of the resulting Z-statistics and (2) Systematically apply the Kendall Tau test to sub-

samples within the data and determine the greatest difference between the resulting Z-

statistics.  The results will be discussed herein. 

Approach 1 

The first approach applied the Kendall Tau test over different parts of the entire 

time series.  A matlab program was written to alter the location and duration within the 

actual data series to be analyzed.  The program simulated 10,000 data samples with the 

following characteristics: (1) mean = 1,000; (2) standard error = 150; (3) length = 100; 

and (4) trend magnitude = 2.  Then, the Kendall Tau test was systematically applied to 

each sample.  First, the entire sample was analyzed (i.e., start time = 1 and duration = 

100). Then the duration was decreased by increments of 10 until the sample size is 

decreased to 30.  Next, the start time was increased by increments of 10 and the durations 

at this start time were decreased by increments of 10 accordingly.  The Kendall Tau test 

was conducted for each sub-sample constructed from the original sample.  At the end of 

the analyses, the program identified the greatest Z value calculated from each Kendall 

Tau analysis.  The start time and duration associated with this Z value was stored in a 

vector.  At the end of the 10,000 simulations, the mean of the start time and duration were 

analyzed.  The results for various combinations of start times and durations are shown in 

Table 7.1. 
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Table 7-1. Estimated Start and Duration Results of Partial Duration Trend for 
Systematically Applying the Kendal Tau Test. 

 

The results show that the duration was underestimated for the full duration 

sample; however, the duration of the remaining samples was consistently overestimated 

based on the maximum Z-value within the different sub-samples.  The smaller the partial 

trend duration, the greater the duration is overestimated.  The start times are 

overestimated for an actual start time of zero and underestimated for all other start times.  

Comparison of the three scenarios with an actual duration of 50 shows that when the 

trend of length 50 is centered in the data (i.e., starts at position 25 and ends at position 

75) rather than occuring towards the beginning or end of the data series (i.e., starts at 

position 0 and ends at position 50 or starts at position 50 and ends at position 100), the 

estimate of the start time and duration are more accurate.  This coincides with the results 

from the power analysis for partial duration trends in which the trends in the middle of 

the data resulted in greater power, implying a greater Z-value.  These results suggest that 

the Z-value alone may not be an accurate representation of a partial trend within a time 
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series.  It is apparent that inclusion of additional data values within a sample increases the 

Z-value resulting in a false trend. 

Approach 2 

The second approach was to again systematically create sub-samples within the 

data; however, this approach splits the entire sample into two sub-samples, applies the 

Kendal Tau test to each sub-sample, and calculates the difference between the two Z-

values, Z1 and Z2.  The hypothesis is that the span of the partial duration trend will have 

a greater difference in Z value from the span of the data that does not contain a trend.  A 

potential breakpoint, or potential location of the transition between the trend and no-trend 

portion of the data, is first located at position 20 in the time series.  This breakpoint 

divides the entire time series into two samples, S1 and S2.  The Kendall Tau test is then 

applied to both S1 and S2 and the test statistics, Z1 and Z2, respectively, were stored in a 

vector.  The absolute value of the difference between Z2 and Z1 was also stored in a 

vector.  The potential breakpoint was then systemically shifted by an increment of 1 and 

the previous steps were repeated.  The time series position (n-20) in the time series was 

the final breakpoint tested.  This decision was made to ensure that each of the sub-

samples consisted of at least 20 values.     

 After Z1 and Z2 are evaluated at each breakpoint, the greatest difference between 

the two is identified.  For portions of the data in which a trend does not exist, the random 

variation is assumed to be evenly distributed and the resulting Z value will be zero.  The 

portion of the data that contains the entire partial trend duration would then have the 

highest Z-value, and not contain any portion of the no-trend data.  This would result in 
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the greatest difference between the Z-values and enable the actual breakpoint to be 

identified.   

This procedure was applied to 1,000 simulations and the average Z1-value, Z2-

value, and differences between at each breakpoint were calculated and compared.  The 

characteristics of the data for each analysis are as follows: (1) mean = 1,000; (2) standard 

error = 25; (3) sample size= 100; (4) slope = 2; and (5) breakpoint at 50.  The standard 

error was kept to a minimum to first explore how the Kendall Tau test would react to the 

partial duration trend without adding the complication of random variation.   

Figures 7-1 and 7-2 show the values of Z1, Z2, and the Z1-Z2 difference for a 

sample with a partial duration trend beginning at position 0 and ending at position 50 and 

beginning at position 50 and ending at position 100, respectively.  For both scenarios, the 

greatest difference between Z1 and Z2 would in theory occur at the 50th position in the 

time series.  However, Figure 7-1 suggests that the greatest difference in Z-values does 

not appear at the actual breakpoint.  Instead, it appears (see Figure A-1) that the 

difference increases as the breakpoint increases.  As the breakpoint increases, the length 

of S1 increases.  S1 represents the trend portion of the data up to location 50 and any 

portion of the no-trend data after location 50.  This implies that even if the increase in the 

length of S1 includes no-trend values, the additional values still increase the value of Z1.  

However, Z2, the no-trend portion of the data, converges to 0 at a breakpoint location of 

50.  This is expected and suggests that the Kendall Tau test is able to accurately identify a 

no-trend location.  Since Z2 converges to zero while Z1 continues to increase, the 

greatest difference, Z1-Z2, occurs at the latest possible breakpoint.  This implies that the 

method will inaccurately identify the breakpoint for a partial duration trend.   
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Figure 7-1. Z1, Z2, and Difference between for Sample with Partial Duration Trend 
from position 0 to 50. 

Figure 7-2 shows similar results for the sample consisting of a partial duration 

trend beginning at position 50 and ending at position 100; however, the difference in Z-

values now increases as the breakpoint decreases rather than as the breakpoint increases.  

For this analysis, S2 is the portion that contains the trend and decreasing the breakpoint 

lengthens S2.  Z1 converges to 0 from the locations 0 to 50 within the entire sample, 

again implying that the method results in an accurate assessment of the no-trend portion 

of the data.  Therefore, the findings are consistent with Figure A-1.  The Z-value 

associated with the trend portion of the data increases as the sample increases and 

includes no-trend portions of the data.  This results in an inaccurate estimate of the 

breakpoint based on the differences in Z-values at each potential breakpoint. 
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Figure 7-2. Z1, Z2, and Difference between for Sample with Partial Duration Trend 
from position 50 to 100. 

Analysis of Kendal Tau Test Statistic under Partial Trend Duration Conditions 

Further analyses were conducted to determine the factors that cause the Kendall 

Tau test statistic to increase in magnitude when no-trend portions of the data sample are 

included.  The test statistic consists of two parts: (1) the S-value in the numerator and (2) 

the standard deviation of S in the denominator.  The S-value represents the sum of 

concordances (‘pluses’) and discordances (‘minuses’) as each value in the sample is 

systematically compared to each other.  To analyze the behavior of this test statistic under 

partial trends, a sample of length 100 was created with a partial trend from 0 to 50 and a 

trend magnitude equal to 20%.  For this analysis, the standard error was set equal to zero 

to explore the test statistic under perfect trend and no- trend conditions.  The sample was 

again systematically divided into sub-samples; however, the beginning of the sub-sample 

remained at the first position in the time series and the end of the sub-sample began at the 
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20th position and was increased by increments of 1.  The end point is referred to as the 

breakpoint, as it would potentially be the end of the trend and beginning of the no-trend 

portion of the data.  For each sub-sample, the Kendall Tau test was applied and the Z-

value, S-value, and standard deviation were stored in vectors.   

Figure 7-3 shows the Z-value for each sub-sample, identified by the breakpoint 

location.  It is apparent that the Z-value is increasing beyond that of the trend, as was 

discovered in previous analyses.  However, it is noted that the rate of increase in the Z-

value is changing as the breakpoint shifts.  The S-values and Standard Deviations of S are 

shown in Figures 7-4 and 7-5, respectively, to explain the changes in the Z-value. 

Figure 7-3. Z-value for Sub-samples defined by the Breakpoint. 

 It is apparent from the figures that the S-values are also increasing as the 

breakpoint increases.  However, the rate of increase is non-linear from breakpoints 20 to 

50 and linear from breakpoints 50 and greater.  The standard deviation is increasing as 
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well; however, it is increasing at a slower rate than the S-value .  This explains the 

increase in the Z-value as the breakpoint increases.  With the S-value in the numerator 

and the standard deviation in the denominator of test statistic, the numerator is increasing 

at a faster rate and thus the Z-value is increasing.   

Figure 7-4. S-Value for Sub-samples defined by the Breakpoint. 
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Figure 7-5. Standard Deviation of S-Values for Sub-sample defined by the 
Breakpoint. 

The first derivative of the S-values was calculated to explore the rate of change of 

the S-value as the breakpoint changes.  The results are shown in Figure 7-6.  The first 

derivative, Delta S, increases at a linear rate from position 0 to 50; however, beyond the 

50th breakpoint, Delta S stabilizes at 50.  Further analyses of Delta S shows that where 

the trend occurs, the function of delta S versus sample size (which is defined by the 

breakpoint) is that Delta S equals one less than the sample size.  This is rational because 

adding one value to the sample will create (n-1) additional comparisons between sample 

values.  In a perfect trend, each of these comparisons will be a concordance or plus, 

resulting in an increase of (n-1) to the total S-value.  Likewise, as the sample size or 

potential breakpoint extends beyond the actual breakpoint, 50, the increase in S stabilizes 

at a value of 50.  This is also rational, because with each new value, 50 previous values 

will be of lesser value, adding a ‘plus’ value to the calculation of S. 
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Figure 7-6. First Derivative of S (Delta S) for Sub-Sample defined by the 
Breakpoint. 

Based on this information, it is apparent that the Z-value increases as ‘no trend’ 

data values are included in the sub-sample because a significant amount of values remain 

less than the values being added to the sub-sample.  Therefore, while the Kendall Tau test 

is very powerful in detecting gradual trends, it is not capable of detecting partial duration 

trends within a time series. 
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8 Appendix B 
 
Simplifications for NRCS Graphical Peak Discharge Method 

Simplifications of the Time of Concentration 

The time of concentration (tc) is calculated based on the lag equation: 

5.0
7.0

8.0 *9
1000

**00526.0 S
CN

Ltc    Eq. 8-1 

where tc = time of concentration (minutes), L = length of the watershed (ft), CN = the 

curve number, and S = slope (ft/ft) (McCuen 2005).  The length of the watershed for the 

lag equation is calculated based on the following equation:  

L = 209*A0.60      Eq. 8-2 

where L = length (ft) and A = area (acres).    The time of concentration equation must be 

converted to hourly units and the area must be converted to square miles to be consistent 

with the units in the NRCS Graphical Peak Discharge equation.  Additionally, the curve 

number for each soil group can be substituted into the equation to further simplify the 

inputs.  The following steps were taken to simplify the time of concentration equation.  

The steps are conducted for each soil group. 

1) L  = 209*A0.60 

a. The area units for the rest of the peak discharge equation are square miles; 

therefore, a conversion was necessary: 

i. L  = 209*A0.60 

ii. L = 209*(640A)0.6 = 133,760*A0.6 

2) Substitute L into the Tc equation 
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a. 5.0
7.0

8.06.0 *9
1000

*)*760,133(*00526.0 S
CN

Atc  

b. Distribute the exponent and simplify the numeric values in the expression 

in 2a 

i. 5.0
7.0

48.0 *9
1000

**381.66 S
CN

Atc  

c. Convert from minutes to hours by dividing by 60 minutes per hour 

i. 5.0
7.0

48.0 *9
1000

**106.1 S
CN

Atc  

d. For each soil group, solve the expression: 
7.0

9
1000

CN
 

i. Soil Group A:  7.158566  

ii. Soil Group B: 4.056885 

iii. Soil Group C:  2.871841 

iv. Soil Group D: 2.403519 

e. Substitute the above values in for the CN expression and multiply by 

0.002478 to simplify the equation as follows 

i. Tc = C4 * A 0.48 * S -0.5 

ii. With A = area (mi2), S = slope (ft/ft), and C4 defined as the product 

of the CN expression and 0.002478 for each soil group as follows 

1. Soil Group A:  7.9199 

2. Soil Group B:  4.4884 

3. Soil Group C:  3.1773 

4. Soil Group D: 2.6592 
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Simplifications for the TR-55 Equation Coefficients 

The coefficients, C0, C1, and C2, were graphed versus Ia/P based on the values 

provided in TR-55.  Polynomial functions were then fit to the coefficients as a function of 

Ia/P as shown in Figures 4.46, 4.47, and 4.48.  The coefficient values and the fitted 

polynomial coefficient values are shown in Table 8-1. 

Table 8-1. Coefficients for Polynomial Functions fit to the TR-55 Coefficients where 
x = Ia/P. 

Equation b0 + b1x + b2x^2 
Coefficient b0 b1 b2 

c0 2.527 0.475 -2.234 
c1 -0.558 -0.708 1.555 
c2 -0.176 0.043 0.604 

  

Then, for each soil group, Ia corresponding to the appropriate curve number was 

substituted into the polynomial equations and the functions were simplified.  The 

resulting coefficients are shown in Table 8-2. 

Table 8-2. Coefficient Values for Polynomial Functions fit to the TR-55 Coefficients 
as a function of P (in.). 

Soil Group 
Equation b0 + b1/P + b2/(P^2) 

Coefficient b0 b1 b2 

A 
c0 2.527 1.486 -21.861 
c1 -0.558 -2.215 15.217 
c2 -0.176 0.135 5.911 

B 
c0 2.527 0.607 -3.653 
c1 -0.558 -0.905 2.542 
c2 -0.176 0.055 0.988 

C 
c0 2.527 0.334 -1.103 
c1 -0.558 -0.498 0.768 
c2 -0.176 0.030 0.298 

D 
c0 2.527 0.238 -0.559 
c1 -0.558 -0.354 0.389 
c2 -0.176 0.022 0.151 
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9 Appendix C 
 

Figure 9-1. Observed and Adjusted Peak Discharge Records (cfs) for the A2 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2025. 

Figure 9-2. Observed and Adjusted Peak Discharge Records (cfs) for the A1B 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2025. 
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Figure 9-3. Observed and Adjusted Peak Discharge Records (cfs) for the B1 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2025. 

Figure 9-4. Observed and Adjusted Peak Discharge Records (cfs) for the A2 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2050. 
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Figure 9-5. Observed and Adjusted Peak Discharge Records (cfs) for the A1B 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2050. 

 

Figure 9-6. Observed and Adjusted Peak Discharge Records (cfs) for the B1 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2050. 
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Figure 9-7. Observed and Adjusted Peak Discharge Records (cfs) for the A2 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2075. 

Figure 9-8. Observed and Adjusted Peak Discharge Records (cfs) for the A1B 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2075. 
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Figure 9-9. Observed and Adjusted Peak Discharge Records (cfs) for the B1 
Emissions Scenario, Urbanization Scenarios 1 and 2, and Design Year 2075. 
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Figure 9-10. Flood Frequency Analysis for Emissions Scenario A1B and 
Urbanization Scenario 1 
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 Figure 9-11. Flood Frequency Analysis for Emissions Scenario A2 and 
Urbanization Scenario 1 
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 Figure 9-12. Flood Frequency Analysis for Emissions Scenario A2 and 
Urbanization Scenario 2 
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Figure 9-13. Flood Frequency Analysis for Emissions Scenario B1 and Urbanization 
Scenario 1 
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Figure 9-14. Flood Frequency Analysis for Emissions Scenario B1 and Urbanization 
Scenario 2 
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Figure 10-1. 100-yr Return Period Floodplain for the Stationarity Scenario. 
 

Figure 10-2. 100-yr Return Period Floodplain for the Best Case Scenario. 
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Figure 10-3. 100-yr Return Period Floodplain for the Best Case Scenario. 

 
 

Table 10-1. Conversion of Land cover from 2010 to 2100 Conditions for Best Case 
Scenario. 
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Table 10-2. Conversion of Land cover from 2010 to  
2100 Worst Case Scenario Conditions. 
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Table 10-3. Adjustments of Total Building Loss for Best Case Scenario  

and 100-yr Flood. 
 

Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 

2100 Total 
Economic Loss ($ 

Thousands) 
240276022003004 495 4.4% 517 
240276022003008 450 10.8% 499 
240276022003010 5448 4.3% 5685 
240276022004000 1296 4.4% 1353 
240276022004001 11586 6.9% 12390 
240276023041000 894 4.7% 936 
240276023041005 726 3.0% 748 
240276023041006 410 1.7% 417 
240276023041012 6442 7.1% 6897 
240276023041019 2212 2.3% 2263 
240276023041020 6 0.0% 6 
240276023041021 595 17.1% 697 
240276023042010 232 9.7% 255 
240276023042015 30 11.6% 33 
240276023042016 0 0.0% 0 
240276023042017 106 0.0% 106 
240276023051000 6385 7.8% 6881 
240276023052001 1026 6.8% 1095 
240276023062015 1007 9.9% 1107 
240276023062016 524 12.7% 591 
240276030001005 259 6.6% 276 
240276030001006 21 10.5% 23 
240276030001007 0 12.5% 0 
240276030001008 570 6.0% 604 
240276030002000 159 4.3% 166 
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Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 

2100 Total 
Economic Loss ($ 

Thousands) 
240276030002001 0 15.1% 0 
240276030002016 77 0.4% 77 
240276054011003 4160 7.8% 4484 
240276054011004 2706 4.8% 2836 
240276054011005 63 13.7% 72 
240276054011007 3370 7.5% 3622 
240276054011009 0 16.0% 0 
240276054011010 3893 15.2% 4486 
240276054012000 2834 9.0% 3090 
240276054012002 171 6.1% 181 
240276054023000 0 8.0% 0 
240276054023001 2853 12.9% 3220 
240276054023006 0 15.9% 0 
240276054023007 11754 4.9% 12335 
240276054023019 278 4.6% 291 
240276054023020 0 9.5% 0 
240276056023017 39 6.2% 41 
240276056023019 0 2.9% 0 
240276056023020 0 8.3% 0 
240276066031003 2958 10.6% 3272 
240276066032001 2610 6.7% 2784 
240276066032003 0 5.6% 0 
240276066032004 0 6.2% 0 
240276067011000 882 9.0% 962 
240276067011001 47 6.0% 50 
240276067011002 524 6.3% 557 
240276067011003 6720 7.3% 7208 
240276067011004 0 2.9% 0 
240276067011005 0 14.6% 0 
240276067011006 0 2.2% 0 
240276067011007 5261 10.7% 5822 
240276067011023 14 12.9% 16 
240276067012010 1202 9.9% 1321 
240276067031003 7211 3.3% 7450 
240276068033000 0 14.0% 0 
240276068033001 7479 11.0% 8302 
240276068033003 1025 15.4% 1183 
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Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 

2100 Total 
Economic Loss ($ 

Thousands) 
240276068033004 5890 6.0% 6245 
240276068041000 0 0.0% 0 
240276068041001 6 0.0% 6 
240276068041005 0 3.3% 0 
240276068041006 0 12.6% 0 
240276068041007 71 8.9% 77 
240276068041008 1760 13.7% 2001 
240276068041009 0 5.7% 0 
240276068041010 15371 0.0% 15371 
240276069023001 1994 0.0% 1994 
240276069024002 579 0.0% 579 
240276069024003 6 0.0% 6 
240276069024005 764 0.0% 764 
240276069024006 1165 0.0% 1165 
240276069024007 345 0.0% 345 

        
Total 136961   145757 

 
Table 10-4. Adjustments of Total Building Loss for Best Case Scenario  

and 500-yr Flood. 
 

Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276022003004 591 4.4% 617 
240276022003008 753 10.8% 835 
240276022003010 6513 4.3% 6796 
240276022004000 1804 4.4% 1883 
240276022004001 16585 6.9% 17736 
240276022004002 19 11.8% 21 
240276023041000 1147 4.7% 1201 
240276023041005 1001 3.0% 1031 
240276023041006 512 1.7% 521 
240276023041012 8602 7.1% 9209 
240276023041019 2864 2.3% 2930 
240276023041020 22 0.0% 22 
240276023041021 758 17.1% 888 
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Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276023042010 340 9.7% 373 
240276023042011 1 10.4% 1 
240276023042015 46 11.6% 51 
240276023042016 0 0.0% 0 
240276023042017 126 0.0% 126 
240276023051000 8690 7.8% 9366 
240276023052001 1217 6.8% 1299 
240276023062015 1332 9.9% 1464 
240276023062016 663 12.7% 747 
240276030001005 373 6.6% 398 
240276030001006 42 10.5% 46 
240276030001007 0 12.5% 0 
240276030001008 888 6.0% 941 
240276030002000 223 4.3% 233 
240276030002001 0 15.1% 0 
240276030002002 54 11.2% 60 
240276030002003 0 10.1% 0 
240276030002016 108 0.4% 108 
240276054011003 5201 7.8% 5606 
240276054011004 3267 4.8% 3424 
240276054011005 193 13.7% 219 
240276054011006 0 6.3% 0 
240276054011007 3692 7.5% 3968 
240276054011008 137 9.9% 151 
240276054011009 0 16.0% 0 
240276054011010 5273 15.2% 6076 
240276054012000 3775 9.0% 4117 
240276054012002 485 6.1% 515 
240276054012003 90 12.4% 101 
240276054013000 34 10.5% 38 
240276054023000 0 8.0% 0 
240276054023001 4406 12.9% 4973 
240276054023003 1046 9.2% 1142 
240276054023006 0 15.9% 0 
240276054023007 15901 4.9% 16686 
240276054023009 1032 8.1% 1116 
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Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276054023019 415 4.6% 434 
240276054023020 0 9.5% 0 
240276056023017 53 6.2% 56 
240276056023019 0 2.9% 0 
240276056023020 0 8.3% 0 
240276066031000 47 8.5% 51 
240276066031003 5856 10.6% 6478 
240276066032001 3463 6.7% 3694 
240276066032003 0 5.6% 0 
240276066032004 0 6.2% 0 
240276067011000 1263 9.0% 1377 
240276067011001 50 6.0% 53 
240276067011002 954 6.3% 1014 
240276067011003 8824 7.3% 9464 
240276067011004 0 2.9% 0 
240276067011005 0 14.6% 0 
240276067011006 0 2.2% 0 
240276067011007 6458 10.7% 7147 
240276067011023 79 12.9% 89 
240276067012008 123 9.9% 135 
240276067012010 1581 9.9% 1737 
240276067031003 9743 3.3% 10066 
240276067042000 5 8.0% 5 
240276068032000 2 3.4% 2 
240276068032004 15 0.0% 15 
240276068033000 0 14.0% 0 
240276068033001 10224 11.0% 11348 
240276068033003 1598 15.4% 1845 
240276068033004 7788 6.0% 8257 
240276068041000 0 0.0% 0 
240276068041001 18 0.0% 18 
240276068041005 0 3.3% 0 
240276068041006 0 12.6% 0 
240276068041007 1802 8.9% 1963 
240276068041008 4073 13.7% 4630 
240276068041009 0 5.7% 0 
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Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276068041010 20916 0.0% 20916 
240276069023001 2711 0.0% 2711 
240276069023002 0 0.0% 0 
240276069024002 717 0.0% 717 
240276069024003 985 0.0% 985 
240276069024005 1315 0.0% 1315 
240276069024006 1937 0.0% 1937 
240276069024007 702 0.0% 702 

        
Total 193523   206196 

 
 

Table 10-5. Adjustments of Total People Displaced for Best Case Scenario  
and 100-yr Flood. 

 

Census Block 
2010 Population 

Displaced 
Increase in Consequences 

for Census Block 
2100 Population 

Displaced  
240276022003004 12 4.4% 13 
240276022003008 19 10.8% 21 
240276022003010 0 4.3% 0 
240276022004000 30 4.4% 31 
240276022004001 149 6.9% 159 
240276022004002 1 11.8% 1 
240276023041000 6 4.7% 6 
240276023041005 22 3.0% 23 
240276023041006 7 1.7% 7 
240276023041012 138 7.1% 148 
240276023041019 49 2.3% 50 
240276023041020 0 0.0% 0 
240276023041021 17 17.1% 20 
240276023042010 8 9.7% 9 
240276023042011 0 10.4% 0 
240276023042015 0 11.6% 0 
240276023042016 0 0.0% 0 
240276023042017 3 0.0% 3 
240276023051000 166 7.8% 179 
240276023052001 29 6.8% 31 
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Census Block 
2010 Population 

Displaced 
Increase in Consequences 

for Census Block 
2100 Population 

Displaced  
240276023062014 4 12.8% 5 
240276023062015 27 9.9% 30 
240276023062016 12 12.7% 14 
240276030001005 11 6.6% 12 
240276030001006 0 10.5% 0 
240276030001007 0 12.5% 0 
240276030001008 4 6.0% 4 
240276030002000 3 4.3% 3 
240276030002001 0 15.1% 0 
240276030002016 1 0.4% 1 
240276054011003 111 7.8% 120 
240276054011004 79 4.8% 83 
240276054011005 2 13.7% 2 
240276054011006 0 6.3% 0 
240276054011007 70 7.5% 75 
240276054011008 1 9.9% 1 
240276054011009 0 16.0% 0 
240276054011010 135 15.2% 156 
240276054012000 44 9.0% 48 
240276054012002 5 6.1% 5 
240276054023000 0 8.0% 0 
240276054023001 67 12.9% 76 
240276054023006 0 15.9% 0 
240276054023007 0 4.9% 0 
240276054023019 0 4.6% 0 
240276054023020 0 9.5% 0 
240276056023017 0 6.2% 0 
240276056023019 0 2.9% 0 
240276056023020 0 8.3% 0 
240276066031003 159 10.6% 176 
240276066032001 53 6.7% 57 
240276066032003 0 5.6% 0 
240276066032004 0 6.2% 0 
240276067011000 0 9.0% 0 
240276067011001 1 6.0% 1 
240276067011002 7 6.3% 7 
240276067011003 0 7.3% 0 
240276067011004 0 2.9% 0 
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Census Block 
2010 Population 

Displaced 
Increase in Consequences 

for Census Block 
2100 Population 

Displaced  
240276067011005 0 14.6% 0 
240276067011006 0 2.2% 0 
240276067011007 90 10.7% 100 
240276067011023 0 12.9% 0 
240276067012010 18 9.9% 20 
240276067031003 0 3.3% 0 
240276067041008 0 13.3% 0 
240276067041018 0 10.3% 0 
240276067042000 0 8.0% 0 
240276068032000 0 3.4% 0 
240276068033000 0 14.0% 0 
240276068033001 106 11.0% 118 
240276068033003 20 15.4% 23 
240276068033004 0 6.0% 0 
240276068041000 0 0.0% 0 
240276068041001 0 0.0% 0 
240276068041005 0 3.3% 0 
240276068041006 0 12.6% 0 
240276068041007 0 8.9% 0 
240276068041008 0 13.7% 0 
240276068041009 0 5.7% 0 
240276068041010 299 0.0% 299 
240276069023001 11 0.0% 11 
240276069024002 12 0.0% 12 
240276069024003 7 0.0% 7 
240276069024005 9 0.0% 9 
240276069024006 22 0.0% 22 
240276069024007 7 0.0% 7 

        
Total 2053   2202 

 
Table 10-6. Adjustments of Total People Displaced for Best Case Scenario  

and 500-yr Flood. 
 

Census Block 

2010 
Population 
Displaced 

Increase in Consequences 
for Census Block 

2100 Population 
Displaced  

240276022003004 13 4.4% 14 
240276022003008 27 10.8% 30 
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Census Block 

2010 
Population 
Displaced 

Increase in Consequences 
for Census Block 

2100 Population 
Displaced  

240276022003010 0 4.3% 0 
240276022004000 33 4.4% 34 
240276022004001 186 6.9% 199 
240276022004002 3 11.8% 3 
240276023041000 8 4.7% 8 
240276023041005 25 3.0% 26 
240276023041006 8 1.7% 8 
240276023041012 160 7.1% 171 
240276023041019 55 2.3% 56 
240276023041020 1 0.0% 1 
240276023041021 30 17.1% 35 
240276023042010 8 9.7% 9 
240276023042011 0 10.4% 0 
240276023042015 0 11.6% 0 
240276023042016 0 0.0% 0 
240276023042017 3 0.0% 3 
240276023051000 191 7.8% 206 
240276023052001 32 6.8% 34 
240276023062014 6 12.8% 7 
240276023062015 37 9.9% 41 
240276023062016 13 12.7% 15 
240276030001005 11 6.6% 12 
240276030001006 1 10.5% 1 
240276030001007 0 12.5% 0 
240276030001008 10 6.0% 11 
240276030002000 4 4.3% 4 
240276030002001 0 15.1% 0 
240276030002002 1 11.2% 1 
240276030002003 0 10.1% 0 
240276030002016 1 0.4% 1 
240276054011000 0 9.3% 0 
240276054011003 121 7.8% 130 
240276054011004 85 4.8% 89 
240276054011005 4 13.7% 5 
240276054011006 0 6.3% 0 
240276054011007 76 7.5% 82 
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Census Block 

2010 
Population 
Displaced 

Increase in Consequences 
for Census Block 

2100 Population 
Displaced  

240276054011008 7 9.9% 8 
240276054011009 0 16.0% 0 
240276054011010 202 15.2% 233 
240276054011011 0 0.7% 0 
240276054012000 50 9.0% 55 
240276054012002 13 6.1% 14 
240276054012003 2 12.4% 2 
240276054013000 3 10.5% 3 
240276054023000 0 8.0% 0 
240276054023001 95 12.9% 107 
240276054023003 28 9.2% 31 
240276054023006 0 15.9% 0 
240276054023007 0 4.9% 0 
240276054023009 0 8.1% 0 
240276054023019 0 4.6% 0 
240276054023020 0 9.5% 0 
240276056023017 0 6.2% 0 
240276056023019 0 2.9% 0 
240276056023020 0 8.3% 0 
240276066031000 4 8.5% 4 
240276066031003 233 10.6% 258 
240276066032001 68 6.7% 73 
240276066032003 0 5.6% 0 
240276066032004 0 6.2% 0 
240276067011000 0 9.0% 0 
240276067011001 1 6.0% 1 
240276067011002 16 6.3% 17 
240276067011003 0 7.3% 0 
240276067011004 0 2.9% 0 
240276067011005 0 14.6% 0 
240276067011006 0 2.2% 0 
240276067011007 104 10.7% 115 
240276067011020 0 7.2% 0 
240276067011023 2 12.9% 2 
240276067012008 4 9.9% 4 
240276067012010 22 9.9% 24 
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Census Block 

2010 
Population 
Displaced 

Increase in Consequences 
for Census Block 

2100 Population 
Displaced  

240276067031003 0 3.3% 0 
240276067041008 0 13.3% 0 
240276067041018 0 10.3% 0 
240276067042000 13 8.0% 14 
240276068032000 0 3.4% 0 
240276068032004 0 0.0% 0 
240276068033000 0 14.0% 0 
240276068033001 130 11.0% 144 
240276068033003 26 15.4% 30 
240276068033004 0 6.0% 0 
240276068041000 0 0.0% 0 
240276068041001 0 0.0% 0 
240276068041005 0 3.3% 0 
240276068041006 0 12.6% 0 
240276068041007 0 8.9% 0 
240276068041008 0 13.7% 0 
240276068041009 0 5.7% 0 
240276068041010 353 0.0% 353 
240276069023001 13 0.0% 13 
240276069023002 0 0.0% 0 
240276069024000 0 4.8% 0 
240276069024002 13 0.0% 13 
240276069024003 29 0.0% 29 
240276069024005 13 0.0% 13 
240276069024006 35 0.0% 35 
240276069024007 13 0.0% 13 

        
Total 2645   2844 

 
 

Table 10-7. Total Building Loss for Worst Case Nonstationarity Scenario  
and 100-yr Flood. 

 

Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276022003004 516 13.3% 585 
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Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276022003008 544 33.1% 724 
240276022003010 5931 13.2% 6717 
240276022004000 1340 13.3% 1518 
240276022004001 11976 21.2% 14510 
240276023041000 1334 14.3% 1525 
240276023041005 781 9.2% 853 
240276023041006 480 5.2% 505 
240276023041012 6908 21.5% 8395 
240276023041019 2236 7.0% 2393 
240276023041020 6 0.0% 6 
240276023041021 543 52.3% 827 
240276023042010 282 29.7% 366 
240276023042015 30 35.3% 41 
240276023042016 0 0.0% 0 
240276023042017 110 0.0% 110 
240276023051000 7033 23.7% 8701 
240276023052001 1281 20.6% 1545 
240276023062015 837 30.2% 1090 
240276023062016 538 38.8% 747 
240276030001005 261 20.1% 313 
240276030001006 26 31.9% 34 
240276030001007 0 38.1% 0 
240276030001008 576 18.3% 681 
240276030002000 163 13.2% 185 
240276030002001 0 46.0% 0 
240276030002016 66 1.2% 67 
240276054011003 4048 23.7% 5009 
240276054011004 2793 14.6% 3201 
240276054011005 168 41.8% 238 
240276054011006 0 19.3% 0 
240276054011007 3302 22.8% 4056 
240276054011008 76 30.1% 99 
240276054011009 0 48.8% 0 
240276054011010 3864 46.5% 5659 
240276054012000 2746 27.6% 3504 
240276054012002 197 18.6% 234 
240276054023000 0 24.3% 0 
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Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276054023001 3206 39.2% 4464 
240276054023003 2 28.1% 3 
240276054023006 0 48.6% 0 
240276054023007 12679 15.1% 14589 
240276054023019 331 14.1% 378 
240276054023020 0 29.0% 0 
240276056023017 40 18.9% 48 
240276056023019 0 8.7% 0 
240276056023020 0 25.2% 0 
240276066031003 3732 32.4% 4941 
240276066032001 3235 20.4% 3893 
240276066032003 0 17.0% 0 
240276066032004 0 19.0% 0 
240276067011000 1197 27.6% 1527 
240276067011001 52 18.2% 61 
240276067011002 509 19.3% 607 
240276067011003 6875 22.1% 8396 
240276067011004 0 8.9% 0 
240276067011005 0 44.5% 0 
240276067011006 0 6.7% 0 
240276067011007 5395 32.5% 7149 
240276067011023 27 39.5% 38 
240276067012010 1248 30.1% 1624 
240276067031003 8001 10.1% 8809 
240276068033000 0 42.6% 0 
240276068033001 7907 33.5% 10559 
240276068033003 1184 47.1% 1742 
240276068033004 6753 18.4% 7993 
240276068041000 0 0.0% 0 
240276068041001 10 0.0% 10 
240276068041005 0 10.0% 0 
240276068041006 0 38.3% 0 
240276068041007 372 27.2% 473 
240276068041008 2758 41.7% 3908 
240276068041009 0 17.4% 0 
240276068041010 16485 0.0% 16485 
240276069023001 2123 0.0% 2123 
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Census Block 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276069024002 679 0.0% 679 
240276069024003 657 0.0% 657 
240276069024005 1101 0.0% 1101 
240276069024006 1313 0.0% 1313 
240276069024007 555 0.0% 555 

        
Total 149418   178563 

 
Table 10-8. Total Building Loss for Worst Case Nonstationarity Scenario  

and 500-yr Flood. 
 

CensusBlock 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276030002000 240 13.2% 272 
240276030002001 0 46.0% 0 
240276030002002 80 34.2% 107 
240276030002003 0 30.8% 0 
240276023041012 8711 21.5% 10586 
240276023041019 2952 7.0% 3159 
240276023041020 30 0.0% 30 
240276023041021 817 52.3% 1244 
240276030001005 382 20.1% 459 
240276030001006 33 31.9% 44 
240276030001007 0 38.1% 0 
240276030001008 914 18.3% 1081 
240276054011003 5234 23.7% 6476 
240276054011004 3317 14.6% 3802 
240276054011005 193 41.8% 274 
240276054011006 0 19.3% 0 
240276054011007 3841 22.8% 4718 
240276054011008 134 30.1% 174 
240276054011009 0 48.8% 0 
240276054011010 5655 46.5% 8282 
240276054011011 0 2.0% 0 
240276054012000 3860 27.6% 4925 
240276056023017 51 18.9% 61 
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CensusBlock 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276056023019 0 8.7% 0 
240276056023020 0 25.2% 0 
240276054023019 463 14.1% 528 
240276054023020 0 29.0% 0 
240276066031003 6188 32.4% 8193 
240276066032001 4169 20.4% 5018 
240276066032003 0 17.0% 0 
240276066032004 0 19.0% 0 
240276022003004 567 13.3% 643 
240276022003006 54 18.8% 64 
240276022003008 987 33.1% 1314 
240276022003010 6883 13.2% 7795 
240276022004000 1620 13.3% 1836 
240276022004001 17092 21.2% 20709 
240276022004002 19 36.0% 26 
240276023041000 1721 14.3% 1967 
240276023041005 1113 9.2% 1216 
240276023041006 504 5.2% 530 
240276023042010 357 29.7% 463 
240276023042011 10 31.8% 13 
240276023042015 50 35.3% 68 
240276023042016 0 0.0% 0 
240276023042017 127 0.0% 127 
240276023051000 8914 23.7% 11028 
240276023052001 1630 20.6% 1966 
240276023052002 0 11.6% 0 
240276023062015 1403 30.2% 1827 
240276023062016 685 38.8% 951 
240276030002015 0 0.0% 0 
240276030002016 118 1.2% 119 
240276068032000 21 10.5% 23 
240276068032004 44 0.0% 44 
240276068033000 0 42.6% 0 
240276068033001 9333 33.5% 12464 
240276068033003 1486 47.1% 2186 
240276068033004 8010 18.4% 9481 
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CensusBlock 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276068041000 0 0.0% 0 
240276068041001 21 0.0% 21 
240276054012002 544 18.6% 645 
240276054012003 94 37.9% 130 
240276054013000 53 32.0% 70 
240276054023000 0 24.3% 0 
240276054023001 4574 39.2% 6369 
240276054023003 1144 28.1% 1466 
240276054023006 0 48.6% 0 
240276054023007 17417 15.1% 20041 
240276054023009 1074 24.7% 1339 
240276067011004 0 8.9% 0 
240276067011005 0 44.5% 0 
240276067011006 0 6.7% 0 
240276067011007 6701 32.5% 8880 
240276067011023 106 39.5% 148 
240276067011000 1275 27.6% 1627 
240276067011001 72 18.2% 85 
240276067011002 996 19.3% 1188 
240276067011003 9087 22.1% 11098 
240276067012008 114 30.1% 148 
240276067012010 1648 30.1% 2144 
240276067031003 9526 10.1% 10488 
240276067042000 20 24.3% 25 
240276068021000 1 22.5% 1 
240276068041005 0 10.0% 0 
240276068041006 0 38.3% 0 
240276068041007 1969 27.2% 2505 
240276068041008 4552 41.7% 6450 
240276068041009 0 17.4% 0 
240276068041010 20467 0.0% 20467 
240276068042001 57 33.6% 76 
240276069023001 2115 0.0% 2115 
240276069023002 0 0.0% 0 
240276069024002 763 0.0% 763 
240276069024003 1075 0.0% 1075 
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CensusBlock 
2010 Total Economic 
Loss ($ Thousands) 

Increase in 
Consequences for 

Census Block 
2100 Total Economic 
Loss ($ Thousands) 

240276069024005 1171 0.0% 1171 
240276069024006 2179 0.0% 2179 
240276069024007 793 0.0% 793 

        
Total  199620   239798 

 
Table 10-9. Total People Displaced Best Case Nonstationarity Scenario and 100-yr 

Flood. 
 

Census Block 
2010 Population 

Displaced 

Increase in 
Consequences for Census 

Block 
2100 Population 

Displaced  
240276022003004 12 0.13 14 
240276022003008 23 0.33 31 
240276022003010 0 0.13 0 
240276022004000 30 0.13 34 
240276022004001 153 0.21 185 
240276022004002 1 0.36 1 
240276023041000 8 0.14 9 
240276023041005 22 0.09 24 
240276023041006 8 0.05 8 
240276023041012 143 0.22 174 
240276023041019 50 0.07 54 
240276023041020 0 0.00 0 
240276023041021 17 0.52 26 
240276023042010 8 0.30 10 
240276023042011 0 0.32 0 
240276023042015 0 0.35 0 
240276023042016 0 0.00 0 
240276023042017 3 0.00 3 
240276023051000 176 0.24 218 
240276023052001 34 0.21 41 
240276023062014 4 0.39 6 
240276023062015 26 0.30 34 
240276023062016 12 0.39 17 
240276030001005 11 0.20 13 
240276030001006 1 0.32 1 
240276030001007 0 0.38 0 
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Census Block 
2010 Population 

Displaced 

Increase in 
Consequences for Census 

Block 
2100 Population 

Displaced  
240276030001008 4 0.18 5 
240276030002000 3 0.13 3 
240276030002001 0 0.46 0 
240276030002016 1 0.01 1 
240276054011000 0 0.28 0 
240276054011003 110 0.24 136 
240276054011004 79 0.15 91 
240276054011005 4 0.42 6 
240276054011006 0 0.19 0 
240276054011007 72 0.23 88 
240276054011008 7 0.30 9 
240276054011009 0 0.49 0 
240276054011010 147 0.46 215 
240276054012000 43 0.28 55 
240276054012002 5 0.19 6 
240276054023000 0 0.24 0 
240276054023001 75 0.39 104 
240276054023003 2 0.28 3 
240276054023006 0 0.49 0 
240276054023007 0 0.15 0 
240276054023019 0 0.14 0 
240276054023020 0 0.29 0 
240276056023017 0 0.19 0 
240276056023019 0 0.09 0 
240276056023020 0 0.25 0 
240276066031003 170 0.32 225 
240276066032001 65 0.20 78 
240276066032003 0 0.17 0 
240276066032004 0 0.19 0 
240276067011000 0 0.28 0 
240276067011001 1 0.18 1 
240276067011002 7 0.19 8 
240276067011003 0 0.22 0 
240276067011004 0 0.09 0 
240276067011005 0 0.44 0 
240276067011006 0 0.07 0 
240276067011007 92 0.33 122 
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Census Block 
2010 Population 

Displaced 

Increase in 
Consequences for Census 

Block 
2100 Population 

Displaced  
240276067011023 0 0.39 0 
240276067012010 20 0.30 26 
240276067031003 0 0.10 0 
240276067041008 0 0.40 0 
240276067041018 0 0.32 0 
240276067042000 0 0.24 0 
240276068032000 0 0.10 0 
240276068033000 0 0.43 0 
240276068033001 108 0.34 144 
240276068033003 23 0.47 34 
240276068033004 0 0.18 0 
240276068041000 0 0.00 0 
240276068041001 0 0.00 0 
240276068041005 0 0.10 0 
240276068041006 0 0.38 0 
240276068041007 0 0.27 0 
240276068041008 0 0.42 0 
240276068041009 0 0.17 0 
240276068041010 305 0.00 305 
240276069023001 11 0.00 11 
240276069024000 0 0.15 0 
240276069024002 13 0.00 13 
240276069024003 23 0.00 23 
240276069024005 12 0.00 12 
240276069024006 24 0.00 24 
240276069024007 11 0.00 11 

        
Total 2179   2662 

 
 

Table 10-10. Total People Displace for Worst Case Nonstationarity Scenario and 
500-yr Flood. 

Census Block 
2010 Population 

Displaced 

Increase in 
Consequences for 

Census Block 
2100 Population 

Displaced  
240276022003004 17 13.3% 19 
240276022003006 9 18.8% 11 
240276022003008 33 33.1% 44 
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Census Block 
2010 Population 

Displaced 

Increase in 
Consequences for 

Census Block 
2100 Population 

Displaced  
240276022003010 0 13.2% 0 
240276022004000 30 13.3% 34 
240276022004001 188 21.2% 228 
240276022004002 3 36.0% 4 
240276023041000 10 14.3% 11 
240276023041005 25 9.2% 27 
240276023041006 8 5.2% 8 
240276023041012 161 21.5% 196 
240276023041019 57 7.0% 61 
240276023041020 1 0.0% 1 
240276023041021 30 52.3% 46 
240276023042010 9 29.7% 12 
240276023042011 1 31.8% 1 
240276023042015 0 35.3% 0 
240276023042016 0 0.0% 0 
240276023042017 3 0.0% 3 
240276023051000 190 23.7% 235 
240276023052001 44 20.6% 53 
240276023052002 1 11.6% 1 
240276023062014 6 39.0% 8 
240276023062015 37 30.2% 48 
240276023062016 13 38.8% 18 
240276030001005 11 20.1% 13 
240276030001006 1 31.9% 1 
240276030001007 0 38.1% 0 
240276030001008 10 18.3% 12 
240276030002000 4 13.2% 5 
240276030002001 0 46.0% 0 
240276030002002 1 34.2% 1 
240276030002003 0 30.8% 0 
240276030002015 0 0.0% 0 
240276030002016 1 1.2% 1 
240276054011000 0 28.3% 0 
240276054011003 121 23.7% 150 
240276054011004 86 14.6% 99 
240276054011005 4 41.8% 6 
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Census Block 
2010 Population 

Displaced 

Increase in 
Consequences for 

Census Block 
2100 Population 

Displaced  
240276054011006 0 19.3% 0 
240276054011007 76 22.8% 93 
240276054011008 7 30.1% 9 
240276054011009 0 48.8% 0 
240276054011010 213 46.5% 312 
240276054011011 5 2.0% 5 
240276054012000 51 27.6% 65 
240276054012002 15 18.6% 18 
240276054012003 3 37.9% 4 
240276054013000 3 32.0% 4 
240276054023000 0 24.3% 0 
240276054023001 95 39.2% 132 
240276054023003 28 28.1% 36 
240276054023006 0 48.6% 0 
240276054023007 0 15.1% 0 
240276054023009 0 24.7% 0 
240276054023019 0 14.1% 0 
240276054023020 0 29.0% 0 
240276056023017 0 18.9% 0 
240276056023019 0 8.7% 0 
240276056023020 0 25.2% 0 
240276066031003 238 32.4% 315 
240276066032001 78 20.4% 94 
240276066032003 0 17.0% 0 
240276066032004 0 19.0% 0 
240276067011000 0 27.6% 0 
240276067011001 2 18.2% 2 
240276067011002 18 19.3% 21 
240276067011003 0 22.1% 0 
240276067011004 0 8.9% 0 
240276067011005 0 44.5% 0 
240276067011006 0 6.7% 0 
240276067011007 106 32.5% 140 
240276067011020 0 22.0% 0 
240276067011023 2 39.5% 3 
240276067012008 3 30.1% 4 
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Census Block 
2010 Population 

Displaced 

Increase in 
Consequences for 

Census Block 
2100 Population 

Displaced  
240276067012010 23 30.1% 30 
240276067031003 0 10.1% 0 
240276067041008 0 40.4% 0 
240276067041018 0 31.5% 0 
240276067042000 15 24.3% 19 
240276068021000 0 22.5% 0 
240276068032000 0 10.5% 0 
240276068032004 0 0.0% 0 
240276068033000 0 42.6% 0 
240276068033001 120 33.5% 160 
240276068033003 25 47.1% 37 
240276068033004 0 18.4% 0 
240276068041000 0 0.0% 0 
240276068041001 0 0.0% 0 
240276068041005 0 10.0% 0 
240276068041006 0 38.3% 0 
240276068041007 0 27.2% 0 
240276068041008 0 41.7% 0 
240276068041009 0 17.4% 0 
240276068041010 347 0.0% 347 
240276068042001 1 33.6% 1 
240276069023001 10 0.0% 10 
240276069023002 0 0.0% 0 
240276069024000 0 14.6% 0 
240276069024002 15 0.0% 15 
240276069024003 28 0.0% 28 
240276069024005 11 0.0% 11 
240276069024006 39 0.0% 39 
240276069024007 13 0.0% 13 

        
Total  2705   3326 
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Figure 10-4. Area Within and Outside of SPA for Worst Case Scenario 100-yr 
Flood. 
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. 
Figure 10-5. Area Within and Outside of SPA for Best Case Scenario 100-yr Flood. 



www.manaraa.com

Figure 10-6. Area Within and Outside of SPA for Best Case Scenario 500-yr Flood. 
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Figure 10-7. Area Within and Outside of SPA for StationarityScenario 500-yr 
Flood. 
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Table 10-11. Proportion of Consequences Allocated to Area Inside and Outside SPA 
for the Best Case 100-yr Flood 

Census Block* Inside Outside 
240276022003004 38% 62% 
240276022003008 56% 44% 
240276022003010 100% 0% 
240276022004000 64% 36% 
240276022004001 94% 6% 
240276023041000 85% 15% 
240276023041005 97% 3% 
240276023041006 94% 6% 
240276023041012 95% 5% 
240276023041019 97% 3% 
240276023041021 100% 0% 
240276023042010 90% 10% 
240276023042015 94% 6% 
240276023042016 100% 0% 
240276023042017 95% 5% 
240276023051000 96% 4% 
240276023052001 95% 5% 
240276023062014 100% 0% 
240276023062015 90% 10% 
240276023062016 96% 4% 
240276030001005 84% 16% 
240276030001006 96% 4% 
240276030001007 100% 0% 
240276030001008 87% 13% 
240276030002000 87% 13% 
240276030002001 88% 12% 
240276030002016 97% 3% 
240276054011003 98% 2% 
240276054011004 94% 6% 
240276054011005 91% 9% 
240276054011007 93% 7% 
240276054011009 87% 13% 
240276054011010 93% 7% 
240276054012000 96% 4% 
240276054012002 100% 0% 
240276054023000 100% 0% 
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Census Block* Inside Outside 
240276054023001 95% 5% 
240276054023006 90% 10% 
240276054023007 92% 8% 
240276054023019 84% 16% 
240276054023020 100% 0% 
240276056023017 100% 0% 
240276056023019 100% 0% 
240276056023020 97% 3% 
240276066031003 85% 15% 
240276066032001 25% 75% 
240276066032003 79% 21% 
240276066032004 54% 46% 
240276067011000 72% 28% 
240276067011001 100% 0% 
240276067011002 100% 0% 
240276067011003 21% 79% 
240276067011004 0% 100% 
240276067011005 0% 100% 
240276067011006 24% 76% 
240276067011007 67% 33% 
240276067012010 99% 1% 
240276067031003 93% 7% 
240276068033000 100% 0% 
240276068033001 90% 10% 
240276068033003 95% 5% 
240276068033004 100% 0% 
240276068041000 96% 4% 
240276068041001 45% 55% 
240276068041005 100% 0% 
240276068041006 100% 0% 
240276068041008 87% 13% 
240276068041009 100% 0% 
240276068041010 85% 15% 
240276069023001 85% 15% 
240276069024002 97% 3% 
240276069024003 94% 6% 
240276069024005 86% 14% 
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Census Block* Inside Outside 
240276069024006 86% 14% 
240276069024007 100% 0% 

*Due to resampling issues in ArcGIS, Census Tracks 240276068041007 and 
240276067011023 were not included in the SPA analysis. The consequences were 

assumed to remain at the 2010 conditions for these census tracks. 
 

Table 10-12. Proportion of Consequences Allocated to Area Inside and Outside SPA 
for the Best Case 500-yr Flood. 

Census Block Inside Outside 
240276022003004 38% 62% 
240276022003008 52% 48% 
240276022003010 96% 4% 
240276022004000 62% 38% 
240276022004001 84% 16% 
240276022004002 0% 100% 
240276023041000 70% 30% 
240276023041005 90% 10% 
240276023041006 90% 10% 
240276023041012 87% 13% 
240276023041019 89% 11% 
240276023041020 0% 100% 
240276023041021 69% 31% 
240276023042010 87% 13% 
240276023042011 0% 100% 
240276023042015 79% 21% 
240276023042016 100% 0% 
240276023042017 89% 11% 
240276023051000 90% 10% 
240276023052001 87% 13% 
240276023062014 56% 44% 
240276023062015 73% 27% 
240276023062016 90% 10% 
240276030001005 82% 18% 
240276030001006 52% 48% 
240276030001007 62% 38% 
240276030001008 43% 57% 
240276030002000 77% 23% 
240276030002001 68% 32% 
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Census Block Inside Outside 
240276030002002 0% 100% 
240276030002003 0% 100% 
240276030002016 84% 16% 
240276054011003 92% 8% 
240276054011004 91% 9% 
240276054011005 90% 10% 
240276054011006 100% 0% 
240276054011007 91% 9% 
240276054011008 79% 21% 
240276054011009 49% 51% 
240276054011010 68% 32% 
240276054012000 86% 14% 
240276054012002 47% 53% 
240276054012003 0% 100% 
240276054013000 0% 100% 
240276054023000 90% 10% 
240276054023001 72% 28% 
240276054023003 0% 100% 
240276054023006 78% 22% 
240276054023007 77% 23% 
240276054023009 0% 100% 
240276054023019 56% 44% 
240276054023020 100% 0% 
240276056023017 77% 23% 
240276056023019 19% 81% 
240276056023020 83% 17% 
240276066031000 0% 100% 
240276066031003 62% 38% 
240276066032001 24% 76% 
240276066032003 79% 21% 
240276066032004 56% 44% 
240276067011000 56% 44% 
240276067011001 50% 50% 
240276067011002 86% 14% 
240276067011003 20% 80% 
240276067011004 0% 100% 
240276067011005 0% 100% 
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Census Block Inside Outside 
240276067011006 23% 77% 
240276067011007 63% 37% 
240276067011023 0% 100% 
240276067012008 0% 100% 
240276067012010 87% 13% 
240276067031003 87% 13% 
240276067042000 0% 100% 
240276068033000 100% 0% 
240276068033001 77% 23% 
240276068033003 83% 17% 
240276068033004 98% 2% 
240276068041000 74% 26% 
240276068041001 28% 72% 
240276068041005 91% 9% 
240276068041006 64% 36% 
240276068041007 15% 85% 
240276068041008 75% 25% 
240276068041009 82% 18% 
240276068041010 76% 24% 
240276069023001 76% 24% 
240276069023002 0% 100% 
240276069024002 91% 9% 
240276069024003 76% 24% 
240276069024005 83% 17% 
240276069024006 62% 38% 
240276069024007 91% 9% 

 
 

Table 10-13. Proportion of Consequences Allocated to Area Inside and Outside SPA 
for the Worst Case 100-yr Flood 

Census Block* Inside Outside 
240276022003004 39% 61% 
240276022003008 43% 57% 
240276022003010 97% 3% 
240276022004000 65% 35% 
240276022004001 93% 7% 
240276023041000 64% 36% 
240276023041005 98% 2% 
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Census Block* Inside Outside 
240276023041006 89% 11% 
240276023041012 93% 7% 
240276023041019 97% 3% 
240276023041021 100% 0% 
240276023042010 90% 10% 
240276023042015 93% 7% 
240276023042016 83% 17% 
240276023042017 98% 2% 
240276023051000 95% 5% 
240276023052001 84% 16% 
240276023062014 100% 0% 
240276023062015 86% 14% 
240276023062016 93% 7% 
240276030001005 85% 15% 
240276030001006 57% 43% 
240276030001007 67% 33% 
240276030001008 85% 15% 
240276030002000 86% 14% 
240276030002001 78% 22% 
240276030002016 97% 3% 
240276054011003 99% 1% 
240276054011004 94% 6% 
240276054011005 94% 6% 
240276054011006 100% 0% 
240276054011007 97% 3% 
240276054011008 78% 22% 
240276054011009 88% 12% 
240276054011010 87% 13% 
240276054012000 97% 3% 
240276054012002 100% 0% 
240276054023000 96% 4% 
240276054023001 86% 14% 
240276054023003 0% 100% 
240276054023006 89% 11% 
240276054023007 88% 12% 
240276054023019 78% 22% 
240276054023020 100% 0% 
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Census Block* Inside Outside 
240276056023017 100% 0% 
240276056023019 100% 0% 
240276056023020 97% 3% 
240276066031003 80% 20% 
240276066032001 21% 79% 
240276066032003 79% 21% 
240276066032004 55% 45% 
240276067011000 55% 45% 
240276067011001 86% 14% 
240276067011002 100% 0% 
240276067011003 21% 79% 
240276067011004 0% 100% 
240276067011005 0% 100% 
240276067011006 24% 76% 
240276067011007 67% 33% 
240276067012010 92% 8% 
240276067031003 91% 9% 
240276068033000 100% 0% 
240276068033001 89% 11% 
240276068033003 92% 8% 
240276068033004 98% 2% 
240276068041000 86% 14% 
240276068041001 45% 55% 
240276068041005 100% 0% 
240276068041006 74% 26% 
240276068041007 29% 71% 
240276068041008 89% 11% 
240276068041009 100% 0% 
240276068041010 85% 15% 
240276069023001 90% 10% 
240276069024002 95% 5% 
240276069024003 92% 8% 
240276069024005 86% 14% 
240276069024006 83% 17% 
240276069024007 97% 3% 



www.manaraa.com

*Due to resampling issues in ArcGIS, Census Track 240276067011023 was not included 
in the SPA analysis. The consequences were assumed to remain at the 2010 conditions 

for this census track. 
 

Table 10-14. Proportion of Consequences Allocated to Area Inside and Outside SPA 
for the Worst Case 500-yr Flood. 

Census Block* Inside Outside 
240276022003004 29% 71% 
240276022003006 0% 100% 
240276022003008 44% 56% 
240276022003010 95% 5% 
240276022004000 67% 33% 
240276022004001 83% 17% 
240276022004002 0% 100% 
240276023041000 56% 44% 
240276023041005 87% 13% 
240276023041006 85% 15% 
240276023041012 86% 14% 
240276023041019 87% 13% 
240276023041020 0% 100% 
240276023041021 69% 31% 
240276023042010 81% 19% 
240276023042011 0% 100% 
240276023042015 77% 23% 
240276023042016 100% 0% 
240276023042017 88% 12% 
240276023051000 89% 11% 
240276023052001 67% 33% 
240276023052002 0% 100% 
240276023062014 56% 44% 
240276023062015 73% 27% 
240276023062016 89% 11% 
240276030001005 83% 17% 
240276030001006 72% 28% 
240276030001007 94% 6% 
240276030001008 43% 57% 
240276030002000 76% 24% 
240276030002001 64% 36% 
240276030002002 0% 100% 
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Census Block* Inside Outside 
240276030002003 0% 100% 
240276030002015 0% 100% 
240276030002016 79% 21% 
240276054011003 91% 9% 
240276054011004 90% 10% 
240276054011005 90% 10% 
240276054011006 100% 0% 
240276054011007 93% 7% 
240276054011008 79% 21% 
240276054011009 49% 51% 
240276054011010 64% 36% 
240276054011011 0% 100% 
240276054012000 85% 15% 
240276054012002 43% 57% 
240276054012003 0% 100% 
240276054013000 0% 100% 
240276054023000 91% 9% 
240276054023001 70% 30% 
240276054023003 0% 100% 
240276054023006 75% 25% 
240276054023007 73% 27% 
240276054023009 0% 100% 
240276054023019 56% 44% 
240276054023020 100% 0% 
240276056023017 78% 22% 
240276056023019 17% 83% 
240276056023020 83% 17% 
240276066031003 60% 40% 
240276066032001 21% 79% 
240276066032003 75% 25% 
240276066032004 56% 44% 
240276067011000 56% 44% 
240276067011001 51% 49% 
240276067011002 78% 22% 
240276067011003 19% 81% 
240276067011004 0% 100% 
240276067011005 0% 100% 
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Census Block* Inside Outside 
240276067011006 23% 77% 
240276067011007 62% 38% 
240276067011023 0% 100% 
240276067012008 0% 100% 
240276067012010 85% 15% 
240276067031003 92% 8% 
240276067042000 0% 100% 
240276068021000 0% 100% 
240276068033000 100% 0% 
240276068033001 82% 18% 
240276068033003 86% 14% 
240276068033004 93% 7% 
240276068041000 72% 28% 
240276068041001 24% 76% 
240276068041005 91% 9% 
240276068041006 66% 34% 
240276068041007 15% 85% 
240276068041008 75% 25% 
240276068041009 81% 19% 
240276068041010 76% 24% 
240276068042001 0% 100% 
240276069023001 78% 22% 
240276069023002 0% 100% 
240276069024002 84% 16% 
240276069024003 75% 25% 
240276069024005 88% 12% 
240276069024006 54% 46% 
240276069024007 87% 13% 

*Due to resampling issues in ArcGIS, Census Track 240276022003006 and 
2402760220032000 were not included in the SPA analysis. The consequences were 

assumed to remain at the 2010 conditions for these census tracks. 
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